Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(9): 6458-69, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25656281

ABSTRACT

A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.

2.
Chaos ; 19(4): 043125, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20059221

ABSTRACT

We analyze dynamics of stationary nonuniform patterns, traveling waves, and spatiotemporal chaos in a simple model of a tubular cross-flow reactor. The reactant is supplied continuously via convective flow and/or by diffusion through permeable walls of the reactor. First order exothermic reaction kinetics is assumed and the system is described by mass and energy balances forming coupled reaction-diffusion-convection equations. Dynamical regimes of the reaction-diffusion subsystem range from pulses and fronts to periodic waves and complex chaotic behavior. Two distinct types of chaotic patterns are identified and characterized by Lyapunov dimension. Next we examine the effects of convection on various types of the reaction-diffusion regimes. Remarkable zigzag fronts and steady state patterns are found despite the absence of differential flow. We employ continuation techniques to elucidate the existence and form of these patterns.


Subject(s)
Diffusion , Models, Chemical , Nonlinear Dynamics , Rheology/methods , Catalysis , Computer Simulation , Energy Transfer , Hot Temperature , Thermodynamics
3.
J Colloid Interface Sci ; 299(1): 342-51, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16513128

ABSTRACT

Spatio-temporal evolution of liquid phase clusters during drying of a granular medium (realised by random packing of cylindrical particles) has been investigated at the length-scale of individual pores. X-ray microtomography has been used to explicitly resolve the three-dimensional spatial distribution of the solid, liquid, and gas phases within the wet particle assemblies. The propagation of liquid menisci through the granular medium during drying was dynamically followed. The effect of contact angle on the degree of dispersion of the drying front has been studied by observing drying in a layer of untreated (hydrophilic) and silanised particles; the drying front was found to be sharper in the case of the silanised (less hydrophilic) particles. This observation was confirmed by direct numerical simulations of drying in a digitally encoded porous medium identical in structure to the experimental one. The simulations also revealed that the average gas-liquid interfacial area in a given porous microstructure strongly depends on the contact angle.

SELECTION OF CITATIONS
SEARCH DETAIL
...