Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 345: 118879, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37659362

ABSTRACT

Restoring peatland ecosystems involves significant uncertainty due to complex ecological and socio-economic feedbacks as well as alternative stable ecological states. The primary aim of this study was to investigate to what extent the natural functioning of drainage-affected peat soils can be restored, and to examine role of soil microbiota in this recovery process. To address these questions, a large-scale before-after-control-impact (BACI) experiment was conducted in drained peatland forests in Estonia. The restoration treatments included ditch closure and partial tree cutting to raise the water table and restore stand structure. Soil samples and environmental data were collected before and 3-4 years after the treatments; the samples were subjected to metabarcoding to assess fungal and bacterial communities and analysed for their chemical properties. The study revealed some indicators of a shift toward the reference state (natural mixotrophic bog-forests): the spatial heterogeneity in soil fungi and bacteria increased, as well as the relative abundance of saprotrophic fungi; while nitrogen content in the soil decreased significantly. However, a general stability of other physico-chemical properties (including pH remaining elevated by ca. one unit) and annual fluctuations in the microbiome suggested that soil recovery will remain incomplete and patchy for decades. The main implication is the necessity to manage hydrologically restored peatland forests while explicitly considering an uncertain future and diverse outcomes. This includes their continuous monitoring and the adoption of a precautionary approach to prevent further damage both to these ecosystems and to surrounding intact peatlands.


Subject(s)
Forests , Microbiota , Uncertainty , Trees , Soil
2.
J Environ Manage ; 250: 109439, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31499461

ABSTRACT

Ecosystem restoration is gaining political and economic support worldwide, but its exact targets and costs often remain unclear. A key issue, both for predicting restoration success and assessing the costs, is the uncertainty of post-restoration development of the ecosystem. A specific combination of uncertainties emerges when ecosystem restoration would negatively affect pre-restoration species conservation values. Such dilemma appears to be common, but largely ignored in restoration planning; for example, in historically degraded forests, wetlands and grasslands that provide novel habitats for some threatened species. We present a framework of linked options for resolving the dilemma, and exemplify its application in extensive mire restoration in Estonia. The broad options include: redistributing the risks by timing; relocating restoration sites; modifying restoration techniques; and managing for future habitats of the species involved. In Estonia, we assessed these options based on spatially explicit mapping of expected future states of the ecosystem, their uncertainty, and the distribution of species at risk. Such planning documentation, combined with follow-up monitoring and experimentation, can be used for adaptive management, by funding organizations and for academic research.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Endangered Species , Estonia , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL