Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Endocr Relat Cancer ; 30(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37140987

ABSTRACT

Prostate cancer (PCa) is the second-most common cause of male cancer-related death in western industrialized countries, and the emergence of metastases is a key challenge in the treatment of PCa. Accumulating studies have shown that long noncoding RNAs (lncRNAs) play an important role in the regulation of diverse cellular and molecular processes during the development and progression of cancer. Here, we utilized a unique cohort of castration-resistant prostate cancer metastases (mCRPC) and corresponding localized tumors and RNA sequencing (RNA-seq). First, we showed that patient-to-patient variability accounted for most of the variance in lncRNA expression between the samples, suggesting that genomic alterations in the samples are the main drivers of lncRNA expression in PCa metastasis. Subsequently, we identified 27 lncRNAs with differential expression (DE-lncRNAs) between metastases and corresponding primary tumors, suggesting that they are mCRPC-specific lncRNAs. Analyses of potential regulation by transcription factors (TFs) revealed that approximately half of the DE-lncRNAs have at least one binding site for the androgen receptor in their regulatory regions. In addition, TF enrichment analysis revealed the enrichment of binding sites for PCa-associated TFs, such as FOXA1 and HOXB13, in the regulatory regions of the DE-lncRNAs. In a cohort of prostatectomy-treated prostate tumors, four of the DE-lncRNAs showed association with progression-free time and two of them (lnc-SCFD2-2 and lnc-R3HCC1L-8) were independent prognostic markers. Our study highlights several mCRPC-specific lncRNAs that might be important in the progression of the disease to the metastatic stage and may also serve as potential biomarkers for aggressive PCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , RNA, Long Noncoding , Humans , Male , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prostatic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic
2.
Cancer Med ; 10(10): 3427-3436, 2021 05.
Article in English | MEDLINE | ID: mdl-33932111

ABSTRACT

The three oncogenic PIM family kinases have been implicated in the development of prostate cancer (PCa). The aim of this study was to examine the mRNA and protein expression levels of PIM1, PIM2, and PIM3 in PCa and their associations with the MYC and ERG oncogenes. We utilized prostate tissue specimens of normal, benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), untreated PCa, and castration-resistant prostate cancer (CRPC) for immunohistochemical (IHC) analysis. In addition, we analyzed data from publicly available mRNA expression and chromatin immunoprecipitation sequencing (ChIP-Seq) datasets. Our data demonstrated that PIM expression levels are significantly elevated in PCa compared to benign samples. Strikingly, the expression of both PIM1 and PIM2 was further increased in CRPC compared to PCa. We also demonstrated a significant association between upregulated PIM family members and both the ERG and MYC oncoproteins. Interestingly, ERG directly binds to the regulatory regions of all PIM genes and upregulates their expression. Furthermore, ERG suppression with siRNA reduced the expression of PIM in PCa cells. These results provide evidence for cooperation of PIM and the MYC and ERG oncoproteins in PCa development and progression and may help to stratify suitable patients for PIM-targeted therapies.


Subject(s)
Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-pim-1/genetics , Aged , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Middle Aged , Prostate/pathology , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/pathology , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Transcriptional Regulator ERG/genetics , Up-Regulation/genetics
3.
Oncogene ; 39(30): 5241-5251, 2020 07.
Article in English | MEDLINE | ID: mdl-32555329

ABSTRACT

Long noncoding RNAs (lncRNAs) play pivotal roles in cancer development and progression, and some function in a highly cancer-specific manner. However, whether the cause of their expression is an outcome of a specific regulatory mechanism or nonspecific transcription induced by genome reorganization in cancer remains largely unknown. Here, we investigated a group of lncRNAs that we previously identified to be aberrantly expressed in prostate cancer (PC), called TPCATs. Our high-throughput real-time PCR experiments were integrated with publicly available RNA-seq and ChIP-seq data and revealed that the expression of a subset of TPCATs is driven by PC-specific transcription factors (TFs), especially androgen receptor (AR) and ETS-related gene (ERG). Our in vitro validations confirmed that AR and ERG regulated a subset of TPCATs, most notably for EPCART. Knockout of EPCART was found to reduce migration and proliferation of the PC cells in vitro. The high expression of EPCART and two other TPCATs (TPCAT-3-174133 and TPCAT-18-31849) were also associated with the biochemical recurrence of PC in prostatectomy patients and were independent prognostic markers. Our findings suggest that the expression of numerous PC-associated lncRNAs is driven by PC-specific mechanisms and not by random cellular events that occur during cancer development. Furthermore, we report three prospective prognostic markers for the early detection of advanced PC and show EPCART to be a functionally relevant lncRNA in PC.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Hepatocyte Nuclear Factor 3-alpha/genetics , Homeodomain Proteins/genetics , Humans , Male , Prospective Studies , Prostatic Neoplasms/pathology , RNA Interference , Receptors, Androgen/genetics , Transcriptional Regulator ERG/genetics
4.
Cell Rep ; 19(10): 2045-2059, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28591577

ABSTRACT

Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC). We show that the deregulation of androgen receptor (AR) expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs) mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10) for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.


Subject(s)
ATPases Associated with Diverse Cellular Activities/biosynthesis , Chromatin Assembly and Disassembly , Chromatin/metabolism , DNA-Binding Proteins/biosynthesis , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Receptors, Androgen/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Chromatin/genetics , Chromatin/pathology , DNA-Binding Proteins/genetics , Humans , Male , Neoplasm Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Serine-Threonine Kinases/genetics , Receptors, Androgen/genetics , Transcription Factors
5.
Cancer Res ; 75(19): 4026-31, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26282172

ABSTRACT

Castration-resistant prostate cancers (CRPC) that arise after the failure of androgen-blocking therapies cause most of the deaths from prostate cancer, intensifying the need to fully understand CRPC pathophysiology. In this study, we characterized the transcriptomic differences between untreated prostate cancer and locally recurrent CRPC. Here, we report the identification of 145 previously unannotated intergenic long noncoding RNA transcripts (lncRNA) or isoforms that are associated with prostate cancer or CRPC. Of the one third of these transcripts that were specific for CRPC, we defined a novel lncRNA termed PCAT5 as a regulatory target for the transcription factor ERG, which is activated in approximately 50% of human prostate cancer. Genome-wide expression analysis of a PCAT5-positive prostate cancer after PCAT5 silencing highlighted alterations in cell proliferation pathways. Strikingly, an in vitro validation of these alterations revealed a complex integrated phenotype affecting cell growth, migration, invasion, colony-forming potential, and apoptosis. Our findings reveal a key molecular determinant of differences between prostate cancer and CRPC at the level of the transcriptome. Furthermore, they establish PCAT5 as a novel oncogenic lncRNA in ERG-positive prostate cancers, with implications for defining CRPC biomarkers and new therapeutic interventions.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/biosynthesis , RNA, Neoplasm/biosynthesis , Trans-Activators/physiology , Adenocarcinoma/pathology , Aged , Apoptosis , Cell Line, Tumor , Cell Movement , Genome-Wide Association Study , Humans , Male , Middle Aged , Neoplasm Invasiveness , Phenotype , Prostatic Hyperplasia/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Long Noncoding/isolation & purification , RNA, Long Noncoding/physiology , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Transcriptional Regulator ERG , Transcriptome
6.
J Gen Virol ; 96(Pt 5): 1180-1189, 2015 May.
Article in English | MEDLINE | ID: mdl-25614591

ABSTRACT

Cystoviridae is a family of bacteriophages with a tri-segmented dsRNA genome enclosed in a tri-layered virion structure. Here, we present a new putative member of the Cystoviridae family, bacteriophage ϕNN. ϕNN was isolated from a Finnish lake in contrast to the previously identified cystoviruses, which originate from various legume samples collected in the USA. The nucleotide sequence of the virus reveals a strong genetic similarity (~80 % for the L-segments, ~55 % for the M-segments and ~84 % for the S-segments) to Pseudomonas phage ϕ6, the type member of the virus family. However, the relationship between ϕNN and other cystoviruses is more distant. In general, proteins located in the internal parts of the virion were more conserved than those exposed on the virion surface, a phenomenon previously reported among eukaryotic dsRNA viruses. Structural models of several putative ϕNN proteins propose that cystoviral structures are highly conserved.


Subject(s)
Bacteriophages/classification , Bacteriophages/isolation & purification , Cystoviridae/classification , Cystoviridae/isolation & purification , Fresh Water/virology , Lakes/virology , Bacteriophages/genetics , Cluster Analysis , Cystoviridae/genetics , Finland , Molecular Sequence Data , Phylogeny , Pseudomonas/virology , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...