Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1821: 148592, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37748569

ABSTRACT

The application of hemoglobin (Hb)-based oxygen carriers (HBOCs) to the treatment of cerebral ischemia has been investigated. A cluster of 1 Hb and 3 human serum albumins (Hb-HSA3) was found to exert neuroprotective effects on ischemia/reperfusion injury. Stroma-free hemoglobin nanoparticles (SFHbNP), a subsequently developed HBOC consisting of a spherical polymerized stroma-free Hb core with a HSA shell, contains the natural antioxidant enzyme catalase and, thus, is expected to exert additive effects. We herein investigated whether SFHbNP exerted enhanced neuroprotective effects in a rat transient middle cerebral artery occlusion (tMCAO) model. Rats were subjected to 2-hour tMCAO and divided into the following 3 groups with the intravenous administration of the respective reagents: (1) phosphate-buffered saline (PBS), as a vehicle (2) Hb-HSA3, and (3) SFHbNP. After 24-hour reperfusion, infarct and edema volumes decreased in the order of the PBS, Hb-HSA3, and SFHbNP groups, with a significant difference (p < 0.05) between the PBS and SFHbNP groups. Similar reductions were observed in oxidative stress, leukocyte recruitment, and blood-brain barrier disruption in the order of the PBS, Hb-HSA3, and SFHbNP groups. In the early phase of reperfusion within 6 h, microvascular HBOC perfusion and cerebral blood flow were maintained at high levels during the reperfusion period in the Hb-HSA3 and SFHbNP groups. However, a difference was observed in tissue oxygen partial pressure levels, which significantly decreased after 6-hour reperfusion in the Hb-HSA3 group, but remained high in the SFHbNP group. A superior oxygen transport ability appears to be related to the enhanced neuroprotective effects of SFHbNP.


Subject(s)
Brain Ischemia , Nanoparticles , Neuroprotective Agents , Reperfusion Injury , Humans , Rats , Animals , Oxygen , Neuroprotective Agents/pharmacology , Hemoglobins/pharmacology , Reperfusion Injury/drug therapy , Brain Ischemia/drug therapy
2.
ACS Appl Bio Mater ; 5(12): 5844-5853, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36399036

ABSTRACT

This paper describes the synthesis and O2 binding properties of core-shell structured hemoglobin (Hb) nanoparticles (NPs), artificial O2 carriers of five types, as designed for use as red blood cell (RBC) substitutes. Human adult Hbs were polymerized using α-succinimidyl-ω-maleimide and dithiothreitol in spheroidal shapes to create parent particles. Subsequent covalent wrapping of the sphere with human serum albumin (HSA) yielded 100 nm-diameter Hb nanoparticles (HbNPs). The HbNP showed higher O2 affinity than that of RBC, but NPs prepared under a N2 atmosphere exhibited low O2 affinity. Entirely synthetic particles comprising recombinant human adult Hb and recombinant HSA were also fabricated. Using a recombinant Hb (rHb) variant in which Leu-ß28 of the heme pocket had been replaced with Phe, we found somewhat low O2 affinity of rHb(ßL28F)NP. Particles made of stroma-free Hb (SFHb) containing natural antioxidant enzyme catalase (SFHbNP) formed a very stable O2 complex, even in aqueous H2O2 solution. The SFHbNP showed good blood compatibility and did not affect the blood cell component functionality. The circulation half-life of SFHbNP in rats was considerably longer than that of naked Hb. All results indicate these Hb-based NPs as useful alternative materials for RBC and as a useful O2 therapeutic reagent in diverse medical scenarios.


Subject(s)
Blood Substitutes , Hemoglobins , Nanoparticles , Animals , Humans , Rats , Blood Substitutes/chemistry , Hemoglobins/chemistry , Hydrogen Peroxide , Nanoparticles/chemistry , Oxygen/chemistry , Serum Albumin, Human/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...