Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1113, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914632

ABSTRACT

Despite their fundamental importance the links between forest productivity, diversity and climate remain contentious. We consider whether variation in productivity across climates reflects adjustment among tree species and individuals, or changes in tree community structure. We analysed data from 60 plots of humid old-growth forests spanning mean annual temperatures (MAT) from 2.0 to 26.6 °C. Comparing forests at equivalent aboveground biomass (160 Mg C ha-1), tropical forests ≥24 °C MAT averaged more than double the aboveground woody productivity of forests <12 °C (3.7 ± 0.3 versus 1.6 ± 0.1 Mg C ha-1 yr-1). Nonetheless, species with similar standing biomass and maximum stature had similar productivity across plots regardless of temperature. We find that differences in the relative contribution of smaller- and larger-biomass species explained 86% of the observed productivity differences. Species-rich tropical forests are more productive than other forests due to the high relative productivity of many short-stature, small-biomass species.


Subject(s)
Forests , Trees , Humans , Biomass , Wood , Asia, Eastern , Tropical Climate
2.
Oecologia ; 196(4): 1095-1106, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34302532

ABSTRACT

Many studies have inferred the way in which natural selection, genetic drift and gene flow shape the population genetic structures, but very few have quantified the population differentiation under spatially and temporally varying levels of selection pressure, population fluctuation and gene flow. In Nara Park (6.6 km2), central Japan, where several hundred sika deer (Cervus nippon) have been protected for more than 1,200 years, heavily- or moderately-haired nettle (Urtica thunbergiana) populations have evolved probably in response to intense deer browsing. Here, we analysed the genetic structure of two Nara Park populations and five surrounding populations using amplified fragment length polymorphism markers. A total of 546 marker loci were genotyped from 210 individuals. A Bayesian method estimated 5.5% of these loci to be outliers, which are putatively under natural selection. Neighbour-joining, principal coordinates and Bayesian clustering analyses using all-loci, non-outlier loci and outlier loci datasets showed that the Nara Park populations formed a cluster distinct from the surroundings. These results indicate the genome-wide differentiation of the Nara Park populations from the surroundings. Moreover, these imply the following: (1) gene flow is limited between these populations and thus genetic drift is a major factor causing the differentiation; and (2) natural selection imposed by intense deer browsing has contributed to some extent to the differentiation. In conclusion, sika deer seems to have counteracted genetic drift to drive the genetic differentiation of hairy nettles in Nara Park. This study suggests that a single herbivore species could lead to genetic differentiation among plant populations.


Subject(s)
Deer , Genetic Drift , Herbivory , Urticaceae/genetics , Amplified Fragment Length Polymorphism Analysis , Animals , Bayes Theorem , Genetic Variation , Genotype , Japan
3.
Sci Rep ; 11(1): 8307, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859305

ABSTRACT

Biogenic volatile organic compounds emitted from plants are important constituents of atmospheric chemistry and play a major role in the resistance of plants against various environmental stresses. However, little is known about how abiotic and biotic environments on a geographic scale relate to diversifications of the emission. Here, we present variations of terpenes stored in and emitted from leaves of a single species in a common garden, using genetically differentiated local populations of Japanese cedar, the most dominant and widely distributed tree species in Japan. Furthermore, we determined the composition of fungal communities in 50 locations, based on the presence or absence of 158 fungal species inhabiting the cedar. The results showed that terpenoids, especially those that are emitted, were highly diversified and geographically structured among the 12 populations. The total amount of stored terpenes was negatively affected by warm and less-snow climates. On the other hand, variations in some emitted terpenoid species among the populations were correlated to antagonistic fungal species inhabiting the Japanese cedar. We propose that the diversification of composition and amount of stored and emitted terpenoids in the tree species is not only structured by climate, but also antagonistic fungal communities through biological interactions.


Subject(s)
Climate , Cryptomeria/metabolism , Cryptomeria/microbiology , Mycobiome , Terpenes/metabolism , Cryptomeria/genetics , Japan , Plant Leaves/metabolism , Plant Leaves/microbiology
4.
Zoolog Sci ; 34(6): 484-489, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29219038

ABSTRACT

The major histocompatibility complex (MHC) includes many genes that are essential for the adaptive immune system, and variation in the antigen binding site (ABS) is related to resistance against pathogens. In the present study, quantitative real-time PCR indicated a larger number of MHC gene copies in the endangered population of Blakiston's fish owl (Bubo blakistoni) than in five other owl species, and massively parallel pyrosequencing detected more MHC class IIß per individual alleles in B. blakistoni than in the other species. A chromosomal fluorescence in situ hybridization (FISH) analysis showed that the MHC class I and class IIß loci are closely linked on a single pair of microchromosomes, indicating that the MHC genes were tandemly duplicated in a limited chromosomal region. Because B. blakistoni has twice as many MHC genes as its sister species, the tawny fish owl (Bubo flavipes), the duplication of MHC genes occurred after these species diverged by speciation. A Bayesian molecular phylogenetic analysis showed that the DAB1 and DAB2 lineages of MHC class IIß alleles from various strigid species each formed a separate clade, indicating that the two allelic lineages preceded the radiation of Strigidae and evolved as paralogs. By contrast, the ABS sequences did not form distinct clades between DAB1 and DAB2 alleles but were intermixed, presumably due to gene conversion. Despite the low diversity of alleles per locus, B. blakistoni had many lineages of MHC class IIß alleles. Gene duplication increases variation in the MHC genes in this species, and could have facilitated adaptation in small populations.


Subject(s)
Gene Duplication , Genetic Variation , Major Histocompatibility Complex/genetics , Strigiformes/genetics , Animals
5.
Immunogenetics ; 69(7): 451-462, 2017 07.
Article in English | MEDLINE | ID: mdl-28501972

ABSTRACT

Populations that have drastically decreased in the past often have low genetic variation, which may increase the risk of extinction. The genes of major histocompatibility complex (MHC) play an important role in the adaptive immune response of jawed vertebrates. Maintenance of adaptive genetic diversity such as that of MHC genes is important for wildlife conservation. Here, we determined genotypes of exon 3 of MHC class IA genes (MHCIA) and exon 2 of MHC class IIB genes (MHCIIB) to evaluate genetic variation of the endangered red-crowned crane population on Hokkaido Island, Japan, which experienced severe population decline in the past. We identified 16 and 6 alleles of MHCIA and MHCIIB, respectively, from 152 individuals. We found evidence of a positive selection at the antigen-binding sites in MHCIA exon 3 and MHCIIB exon 2. The phylogenetic analyses indicated evidence of trans-species polymorphism among the crane MHC genes. The genetic variability in both classes of MHC genes at the population level was low. No geographic structure was found based on the genetic diversity of microsatellite and MHC genes. Our study provides useful data for the optimal management of the red-crowned crane population in Hokkaido and can contribute to future studies on MHC genes of the continental populations of the red-crowned crane and other crane species.


Subject(s)
Birds , Genes, MHC Class II/genetics , Genes, MHC Class I/genetics , Amino Acid Sequence , Animals , Birds/genetics , Birds/immunology , Endangered Species , Microsatellite Repeats/genetics , Phylogeny , Polymorphism, Genetic , Sequence Homology, Amino Acid , Species Specificity
6.
Zoological Lett ; 1: 13, 2015.
Article in English | MEDLINE | ID: mdl-26605058

ABSTRACT

INTRODUCTION: Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIß genes in Blakiston's fish owl, using massively parallel pyrosequencing. RESULTS: We found that the Blakiston's fish owl genome contains at least eight MHC class IIß loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. CONCLUSIONS: Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.

7.
Immunogenetics ; 67(11-12): 705-10, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26452363

ABSTRACT

In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.


Subject(s)
Birds/genetics , Evolution, Molecular , Histocompatibility Antigens Class II/genetics , Polymorphism, Genetic/genetics , Recombination, Genetic/genetics , Selection, Genetic/genetics , Animals , Exons/genetics , Phylogeny , Species Specificity
8.
Genetica ; 143(3): 279-85, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25663497

ABSTRACT

Drosophila bipectinata from Iriomote-jima (IR) is susceptible to the endoparasitoid Leptopilina victoriae from Kota Kinabalu (L. victoriae KK), but D. bipectinata from Kota Kinabalu (KK) and Bogor (BG) is resistant. The cross experiments between the resistant (KK) and susceptible (IR) populations of D. bipectinata suggested that the resistance to this parasitoid is a dominant trait and controlled by a single locus or few linked loci on an autosome. In the AFLP analysis using the IR, KK and BG populations of D. bipectinata and the resistant and susceptible populations derived from a mixed population of these three geographic populations, a DNA fragment almost specific to susceptible flies was detected. It also revealed that genes from the IR population were more frequently maintained in the mixed population compared with those from the KK and BG populations, suggesting that at least a number of genes from the IR population are more advantageous under the laboratory conditions. This explains our previous results that the resistance was lowered in the mixed population although the resistance itself is suggested to incur only low costs; i.e., the resistance gene(s) from the KK and BG populations would have been linked with some genes that are disadvantageous under the laboratory conditions.


Subject(s)
Disease Resistance/genetics , Drosophila/genetics , Hymenoptera , Amplified Fragment Length Polymorphism Analysis , Animals , Crosses, Genetic , Drosophila/parasitology , Female , Genes, Insect , Genetic Loci , Male
9.
Am Nat ; 185(3): 367-79, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25674691

ABSTRACT

Different mechanisms have been proposed to explain how vertical and horizontal heterogeneity in light conditions enhances tree species coexistence in forest ecosystems. The foliage partitioning theory proposes that differentiation in vertical foliage distribution, caused by an interspecific variation in mortality-to-growth ratio, promotes stable coexistence. In contrast, successional niche theory posits that horizontal light heterogeneity, caused by gap dynamics, enhances species coexistence through an interspecific trade-off between growth rate and survival. To distinguish between these theories of species coexistence, we analyzed tree inventory data for 370 species from the 50-ha plot in Pasoh Forest Reserve, Malaysia. We used community-wide Bayesian models to quantify size-dependent growth rate and mortality of every species. We compared the observed size distributions and the projected distributions from size-dependent demographic rates. We found that the observed size distributions were not simply correlated with the rate of population increase but were related to demographic properties such as size growth rate and mortality. Species with low relative abundance of juveniles in size distribution showed high growth rate and low mortality at small tree sizes and low per-capita recruitment rate. Overall, our findings were in accordance with those predicted by foliage partitioning theory.


Subject(s)
Light , Trees/growth & development , Tropical Climate , Bayes Theorem , Demography , Ecosystem , Forests , Longevity , Malaysia
10.
Mol Ecol ; 23(2): 421-34, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24261568

ABSTRACT

To understand the mechanisms behind the diversification of herbivorous insects through insect-plant interactions, it is important to know how the insects change their diet breadth in response to environmental changes. In this study, we investigated the phylogeographical pattern of the leaf beetle Agelasa nigriceps to infer the evolutionary history of its host range. While this beetle commonly uses Actinidia arguta (Actinidiaceae) as a host plant, it has been recorded recently on Pterostyrax hispidus (Styracaceae), which is now increasing in abundance at some localities in Japan due to the indirect effects of high population size of a mammalian herbivore. Considerable variation among populations in the ability of Ag. nigriceps to use P. hispidus suggests that P. hispidus is a newly acquired host plant for this beetle. Phylogenetic analyses using mitochondrial DNA sequences and amplified fragment length polymorphism (AFLP) revealed a high degree of phylogeographical structure in Ag. nigriceps throughout Japan, which is consistent with the hypothesis that several glacial refugia existed in the Japanese archipelago. In contrast, no genetic structure associated with the host plants was detected. Both the mitochondrial DNA and AFLP analyses showed that populations that can use P. hispidus are polyphyletic. These results and geographical variation in host use suggest that the host range expansion to a novel host, P. hispidus, is a very recent and possibly ongoing phenomenon and has occurred independently in several regions. Our study illustrates that the host range of herbivorous insects can evolve repeatedly in response to similar environmental changes.


Subject(s)
Biological Evolution , Coleoptera/genetics , Herbivory , Phylogeny , Actinidia , Amplified Fragment Length Polymorphism Analysis , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Genetics, Population , Japan , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA , Styracaceae
SELECTION OF CITATIONS
SEARCH DETAIL
...