Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 47(37): 12884-12892, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30095138

ABSTRACT

Precise size control of layered double hydroxide nanoparticles (LDHNPs) is crucial for their applications in anion exchange, catalysis, and drug delivery systems. Here, we report the synthesis of LDHNPs through a reconstruction method, using tripodal ligands (e.g., tris(hydroxymethyl)aminomethane; THAM). We found that the mechanism of reconstruction at least includes a dissolution-recrystallization process rather than topotactic transformation. THAM is immobilized on the surface of recrystallized LDHNPs with tridentate linkages, suppressing their crystal growth especially in lateral directions. The particle size of the LDHNPs is precisely controlled by the concentration of THAM regardless of the synthetic routes, such as coprecipitation and reconstruction. It is suggested that the particle size is controlled on the basis of Ostwald ripening which is governed by the equilibrium of the surface modification reaction.

2.
Chemistry ; 23(21): 5023-5032, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28087880

ABSTRACT

Brucite-type layered metal hydroxides are prepared from diverse metallic elements and have outstanding functions; however, their poor intercalation ability significantly limits their chemical designability and the use of their potentially ultrahigh surface areas and unique properties as two-dimensional nanosheets. Here, we demonstrate that tripodal ligands (RC(CH2 OH)3 , R=NH2 , CH2 OH, or NHC2 H4 SO3 H) are useful as "one-size-fits-all" modifiers for the direct synthesis of hybrid metal hydroxide nanosheets with various constituent metallic elements (M=Mg, Mn, Fe, Co, Ni, or Cu) and surface functional groups. The hybrid nanosheets are formed directly from solution phases, and they are stacked into a turbostratic layered structure. The ligands form tridentate Mg-O-C bonds with brucite layers. The hybrid brucite intercalates various molecules and is exfoliated into nanosheets at room temperature, although the non-modified material does not intercalate any molecules. Consequently, both the constituent metallic elements and surface functional groups are freely designed by the direct synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...