Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 14: 285, 2020.
Article in English | MEDLINE | ID: mdl-32982694

ABSTRACT

In the majority of schizophrenia patients, chronic atypical antipsychotic administration produces a significant reduction in or even complete remission of psychotic symptoms such as hallucinations and delusions. However, these drugs are not effective in improving cognitive and emotional deficits in patients with schizophrenia. Atypical antipsychotic drugs have a high affinity for the dopamine D2 receptor, and a modest affinity for the serotonin 5-HT2A receptor. The cognitive and emotional deficits in schizophrenia are thought to involve neural networks beyond the classical dopaminergic mesolimbic pathway, however, including serotonergic systems. For example, mutations in the RELN gene, which encodes Reelin, an extracellular matrix protein involved in neural development and synaptic plasticity, are associated with neurodevelopmental disorders such as schizophrenia and autism spectrum disorder. Furthermore, hippocampal Reelin levels are down-regulated in the brains of both schizophrenic patients and in rodent models of schizophrenia. In the present study, we investigated the effect of Reelin microinjection into the mouse hippocampus on behavioral phenotypes to evaluate the role of Reelin in neurodevelopmental disorders and to test a therapeutic approach that extends beyond classical monoamine targets. To model the cognitive and emotional deficits, as well as histological decreases in Reelin-positive cell numbers and hippocampal synaptoporin distribution, a synaptic vesicle protein, offspring that were prenatally exposed to maternal immune activation were used. Microinjections of recombinant Reelin protein into the hippocampus rescued impairments in object memory and anxiety-like behavior and recruited synaptoporin in the hippocampus in offspring exposed to antenatal inflammation. These results suggest that Reelin supplementation has the potential to treat cognitive and emotional impairments, as well as synaptic disturbances, in patients with neurodevelopmental disorders such as schizophrenia.

2.
Neurotoxicol Teratol ; 76: 106837, 2019.
Article in English | MEDLINE | ID: mdl-31654689

ABSTRACT

Sodium valproate (VPA) is the most widely used antiepileptic drug and is increasingly also being used for several non-epileptic indications including migraines and bipolar disorder. It is known that maternal VPA exposure during pregnancy increases the risk of autism spectrum disorder (ASD) in children. Animal model studies have shown that maternal treatment with VPA in rodents conveys an increased risk for ASD-like phenotypes at the molecular, cellular, and behavioral levels. In contrast, the effect of paternal VPA exposure on behaviors in offspring is unknown. This study seeks to investigate whether paternal VPA exposure in rodents triggers behavioral and epigenetic alterations in offspring. The results show that paternal VPA exposure impairs object cognitive memory, suppresses the hyperactivity evoked by an NMDA receptor antagonist in male and female offspring, and disturbs sensorimotor gating in only females. In addition, since VPA is well known as an inhibitor of histone deacetylases, we examined the levels of acetylated histone H3 in the frontal cortex and hippocampus in the offspring of VPA-exposed sires. Interestingly, paternal VPA exposure down-regulates the levels of acetylated histone H3 in the brain in offspring even though VPA exposure increased acetylated histone H3 levels in the testes of sires. Collectively, these findings suggest that paternal VPA exposure may disturb the histone acetylation balance in the brain of offspring through changes in the germline epigenome, leading to behavioral alterations in offspring.


Subject(s)
Anticonvulsants/toxicity , Behavior, Animal/drug effects , Paternal Exposure/adverse effects , Valproic Acid/toxicity , Animals , Attention Deficit Disorder with Hyperactivity/chemically induced , Attention Deficit Disorder with Hyperactivity/psychology , Brain Chemistry/drug effects , Cognition/drug effects , Emotions/drug effects , Epigenesis, Genetic/drug effects , Female , Histones/metabolism , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Sensory Gating/drug effects , Sex Characteristics , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...