Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(7): e0306856, 2024.
Article in English | MEDLINE | ID: mdl-38991013

ABSTRACT

Site-specific modifications of aspartate residues spontaneously occur in crystallin, the major protein in the lens. One of the primary modification sites is Asp151 in αA-crystallin. Isomerization and racemization alter the crystallin backbone structure, reducing its stability by inducing abnormal crystallin-crystallin interactions and ultimately leading to the insolubilization of crystallin complexes. These changes are considered significant factors in the formation of senile cataracts. However, the mechanisms driving spontaneous isomerization and racemization have not been experimentally demonstrated. In this study, we generated αA-crystallins with different homo-oligomeric sizes and/or containing an asparagine residue at position 151, which is more prone to isomerization and racemization. We characterized their structure, hydrophobicity, chaperone-like function, and heat stability, and examined their propensity for isomerization and racemization. The results show that the two differently sized αA-crystallin variants possessed similar secondary structures but exhibited different chaperone-like functions depending on their oligomeric sizes. The rate of isomerization and racemization of Asp151, as assessed by the deamidation of Asn151, was also found to depend on the oligomeric sizes of αA-crystallin. The predominant isomerization product via deamidation of Asn151 in the different-sized αA-crystallin variants was L-ß-Asp in vitro, while various modifications occurred around Asp151 in vivo. The disparity between the findings of this in vitro study and in vivo studies suggests that the isomerization of Asp151 in vivo may be more complex than what occurs in vitro.


Subject(s)
Aspartic Acid , Protein Multimerization , alpha-Crystallin A Chain , Humans , Isomerism , Aspartic Acid/chemistry , Aspartic Acid/metabolism , alpha-Crystallin A Chain/chemistry , alpha-Crystallin A Chain/metabolism , alpha-Crystallin A Chain/genetics , Hydrophobic and Hydrophilic Interactions , Protein Stability , Protein Structure, Secondary , Asparagine/chemistry , Asparagine/metabolism
2.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140446, 2020 09.
Article in English | MEDLINE | ID: mdl-32442520

ABSTRACT

α-Crystallin, comprising 40-50 subunits of αA- and αB-subunits, is a long-lived major soluble chaperone protein in lens. During aging, α-crystallin forms aggregates of high molecular weight (HMW) protein and eventually becomes water-insoluble (WI). Isomerization of Asp in α-crystallin has been proposed as a trigger of protein aggregation, ultimately leading to cataract formation. Here, we have investigated the relationship between protein aggregation and Asp isomerization of αA-crystallin by a series of analyses of the soluble α-crystallin, HMW and WI fractions from human lens samples of different ages (10-76 years). Analytical ultracentrifugation showed that the HMW fraction had a peak sedimentation coefficient of 40 S and a wide distribution of values (10-450 S) for lens of all ages, whereas the α-crystallin had a much smaller peak sedimentation coefficient (10-20 S) and was less heterogeneous, regardless of lens age. Measurement of the ratio of isomers (Lα-, Lß-, Dα-, Dß-) at Asp58, Asp91/92 and Asp151 in αA-crystallin by liquid chromatography-mass spectrometry showed that the proportion of isomers at all three sites increased in order of aggregation level (α-crystallin < HMW < WI fractions). Among the abnormal isomers of Asp58 and Asp151, Dß-isomers were predominant with a very few exceptions. Notably, the chaperone activity of HMW protein was minimal for lens of all ages, whereas that of α-crystallin decreased with increasing lens age. Thus, abnormal aggregation caused by Asp isomerization might contribute to the loss of chaperone activity of α-crystallin in aged human lens.


Subject(s)
Cataract/metabolism , Lens, Crystalline/chemistry , Protein Aggregation, Pathological/metabolism , alpha-Crystallins/chemistry , Adolescent , Adult , Aged , Aging/metabolism , Child , Chromatography, High Pressure Liquid , Crystallins , Humans , Isomerism , Lens, Crystalline/metabolism , Mass Spectrometry , Middle Aged , Molecular Weight , Young Adult , alpha-Crystallins/metabolism
3.
Protein Sci ; 29(4): 955-965, 2020 04.
Article in English | MEDLINE | ID: mdl-31930615

ABSTRACT

Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens-specific αA-crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA-crystallin with Asn by using site-directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA-crystallin was subjected to enzymatic digestion followed by liquid chromatography-MS/MS to evaluate the ratio of modifications in Asn151-containing peptides. The Asp151Asn αA-crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit-subunit interactions between αA-crystallin and αB-crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA-crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L-Asp to D-Asp residues in vivo.


Subject(s)
Lens, Crystalline/chemistry , Asparagine/chemistry , Asparagine/genetics , Aspartic Acid/chemistry , Aspartic Acid/genetics , Humans , Molecular Conformation , Mutagenesis, Site-Directed , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...