Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 60(5): 973-985, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30668838

ABSTRACT

Deepwater rice has a remarkable shoot elongation response to partial submergence. Shoot elongation to maintain air-contact enables 'snorkelling' of O2 to submerged organs. Previous research has focused on partial submergence of deepwater rice. We tested the hypothesis that leaf gas films enhance internode O2 status and stem elongation of deepwater rice when completely submerged. Diel patterns of O2 partial pressure (pO2) were measured in internodes of deepwater rice when partially or completely submerged, and with or without gas films on leaves, for the completely submerged plants. We also took measurements for paddy rice. Deepwater rice elongated during complete submergence and the shoot tops emerged. Leaf gas films improved O2 entry during the night, preventing anoxia in stems, which is of importance for elongation of the submerged shoots. Expressions of O2 deprivation inducible genes were upregulated in completely submerged plants during the night, and more so when gas films were removed from the leaves. Diel O2 dynamics showed similar patterns in paddy and deepwater rice. We demonstrated that shoot tops in air enabled 'snorkelling' and increased O2 in internodes of both rice ecotypes; however, 'snorkelling' was achieved only by rapid shoot elongation by deepwater rice, but not by paddy rice.


Subject(s)
Oryza/metabolism , Oxygen/metabolism , Plant Leaves/metabolism , Oryza/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Plant Transpiration/physiology
2.
Plant Physiol ; 176(4): 3081-3102, 2018 04.
Article in English | MEDLINE | ID: mdl-29475897

ABSTRACT

Water submergence is an environmental factor that limits plant growth and survival. Deepwater rice (Oryza sativa) adapts to submergence by rapidly elongating its internodes and thereby maintaining its leaves above the water surface. We performed a comparative RNA sequencing transcriptome analysis of the shoot base region, including basal nodes, internodes, and shoot apices of seedlings at two developmental stages from two varieties with contrasting deepwater growth responses. A transcriptomic comparison between deepwater rice cv C9285 and nondeepwater rice cv Taichung 65 revealed both similar and differential expression patterns between the two genotypes during submergence. The expression of genes related to gibberellin biosynthesis, trehalose biosynthesis, anaerobic fermentation, cell wall modification, and transcription factors that include ethylene-responsive factors was significantly different between the varieties. Interestingly, in both varieties, the jasmonic acid content at the shoot base decreased during submergence, while exogenous jasmonic acid inhibited submergence-induced internode elongation in cv C9285, suggesting that jasmonic acid plays a role in the submergence response of rice. Furthermore, a targeted de novo transcript assembly revealed transcripts that were specific to cv C9285, including submergence-induced biotic stress-related genes. Our multifaceted transcriptome approach using the rice shoot base region illustrates a differential response to submergence between deepwater and nondeepwater rice. Jasmonic acid metabolism appears to participate in the submergence-mediated internode elongation response of deepwater rice.


Subject(s)
Floods , Gene Expression Profiling/methods , Oryza/genetics , Plant Leaves/genetics , Plant Shoots/genetics , Water/metabolism , Adaptation, Physiological/genetics , Cyclopentanes/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gibberellins/biosynthesis , Oryza/growth & development , Oryza/metabolism , Oxylipins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...