Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater Eng ; 33(1): 31-40, 2022.
Article in English | MEDLINE | ID: mdl-34250924

ABSTRACT

BACKGROUND: Although trunk muscles are involved in many important functions, evaluating trunk muscle strength is not an easy task. If trunk muscle mass and thickness could be used as indicators of trunk muscle strength, the burden of measurement would be reduced, but the relationship between trunk muscle strength and trunk muscle mass and thickness has not been clarified. OBJECTIVE: The purpose of this study was to clarify the relationship between trunk muscle strength and trunk muscle mass by bioelectrical impedance analysis and trunk muscle thickness by ultrasound imaging in healthy adults. METHODS: One hundred and twenty-one healthy university students were included in this study. Trunk flexion/extension muscle strength and trunk muscle mass by bioelectrical impedance analysis, and trunk muscle thickness by ultrasound imaging were measured. RESULTS: Both trunk flexion strength and trunk extension strength were significantly correlated with trunk muscle mass and oblique and rectus abdominis muscle thickness. Multiple regression analysis showed that trunk extension muscle strength had an independent relationship with trunk muscle mass. CONCLUSIONS: This study demonstrated that trunk muscle mass or trunk muscle thickness can be used as an alternative means for evaluating trunk muscle strength, making the evaluation of trunk muscles less burdensome.


Subject(s)
Muscle Strength , Muscle, Skeletal , Adult , Electric Impedance , Humans , Muscle, Skeletal/diagnostic imaging , Ultrasonography
2.
Front Plant Sci ; 10: 1665, 2019.
Article in English | MEDLINE | ID: mdl-32010156

ABSTRACT

Recently, a recessive Arabidopsis thaliana mutant with abundant stromules in leaf epidermal pavement cells was visually screened and isolated. The gene responsible for this mutant phenotype was identified as PARC6, a chloroplast division site regulator gene. The mutant allele parc6-5 carried two point mutations (G62R and W700stop) at the N- and C-terminal ends of the coding sequence, respectively. Here, we further characterized parc6-5 and other parc6 mutant alleles, and showed that PARC6 plays a critical role in plastid morphogenesis in all cell types of the leaf epidermis: pavement cells, trichome cells, and guard cells. Transient expression of PARC6 transit peptide (TP) fused to the green fluorescent protein (GFP) in plant cells showed that the G62R mutation has no or little effect on the TP activity of the PARC6 N-terminal region. Then, plastid morphology was microscopically analyzed in the leaf epidermis of wild-type (WT) and parc6 mutants (parc6-1, parc6-3, parc6-4 and parc6-5) with the aid of stroma-targeted fluorescent proteins. In parc6 pavement cells, plastids often assumed aberrant grape-like morphology, similar to those in severe plastid division mutants, atminE1, and arc6. In parc6 trichome cells, plastids exhibited extreme grape-like aggregations, without the production of giant plastids (>6 µm diameter), as a general phenotype. In parc6 guard cells, plastids exhibited a variety of abnormal phenotypes, including reduced number, enlarged size, and activated stromules, similar to those in atminE1 and arc6 guard cells. Nevertheless, unlike atminE1 and arc6, parc6 exhibited a low number of mini-chloroplasts (< 2 µm diameter) and rarely produced chloroplast-deficient guard cells. Importantly, unlike parc6, the chloroplast division site mutant arc11 exhibited WT-like plastid phenotypes in trichome and guard cells. Finally, observation of parc6 complementation lines expressing a functional PARC6-GFP protein indicated that PARC6-GFP formed a ring-like structure in both constricting and non-constricting chloroplasts, and that PARC6 dynamically changes its configuration during the process of chloroplast division.

SELECTION OF CITATIONS
SEARCH DETAIL
...