Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 10837, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760808

ABSTRACT

Substantial terrestrial gas emissions, such as carbon dioxide (CO2), are associated with active volcanoes and hydrothermal systems. However, while fundamental for the prediction of future activity, it remains difficult so far to determine the depth of the gas sources. Here we show how the combined measurement of CO2 and radon-222 fluxes at the surface constrains the depth of degassing at two hydrothermal systems in geodynamically active contexts: Furnas Lake Fumarolic Field (FLFF, Azores, Portugal) with mantellic and volcano-magmatic CO2, and Syabru-Bensi Hydrothermal System (SBHS, Central Nepal) with metamorphic CO2. At both sites, radon fluxes reach exceptionally high values (> 10 Bq m-2 s-1) systematically associated with large CO2 fluxes (> 10 kg m-2 day-1). The significant radon‒CO2 fluxes correlation is well reproduced by an advective-diffusive model of radon transport, constrained by a thorough characterisation of radon sources. Estimates of degassing depth, 2580 ± 180 m at FLFF and 380 ± 20 m at SBHS, are compatible with known structures of both systems. Our approach demonstrates that radon‒CO2 coupling is a powerful tool to ascertain gas sources and monitor active sites. The exceptionally high radon discharge from FLFF during quiescence (≈ 9 GBq day-1) suggests significant radon output from volcanoes worldwide, potentially affecting atmosphere ionisation and climate.


Subject(s)
Carbon Dioxide , Radon , Azores , Carbon Dioxide/analysis , Nepal , Portugal , Radon/analysis
2.
J Environ Radioact ; 102(2): 88-102, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21093127

ABSTRACT

Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m(-2) d(-1). Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO(2) concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m(-3), but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO(2) advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m(-3), remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S(1) and semi-diurnal S(2) periodic components. At the advection-dominated points, radon concentration did not exhibit S(1) or S(2) components. At the reference points, however, the S(2) component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S(1) component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle.


Subject(s)
Hot Springs , Radiation Monitoring/methods , Radiation Monitoring/statistics & numerical data , Radon/analysis , Soil Pollutants, Radioactive/analysis , Carbon Dioxide/analysis , Convection , Diffusion , Nepal , Spectrum Analysis , Time Factors
3.
J Environ Radioact ; 100(11): 955-64, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19692153

ABSTRACT

The Syabru-Bensi hydrothermal zone, Langtang region (Nepal), is characterized by high radon-222 and CO(2) discharge. Seasonal variations of gas fluxes were studied on a reference transect in a newly discovered gas discharge zone. Radon-222 and CO(2) fluxes were measured with the accumulation chamber technique, coupled with the scintillation flask method for radon. In the reference transect, fluxes reach exceptional mean values, as high as 8700+/-1500 gm(-2)d(-1) for CO(2) and 3400+/-100 x 10(-3) Bq m(-2)s(-1) for radon. Gases fluxes were measured in September 2007 during the monsoon and during the dry winter season, in December 2007 to January 2008 and in December 2008 to January 2009. Contrary to expectations, radon and its carrier gas fluxes were similar during both seasons. The integrated flux along this transect was approximately the same for radon, with a small increase of 11+/-4% during the wet season, whereas it was reduced by 38+/-5% during the monsoon for CO(2). In order to account for the persistence of the high gas emissions during monsoon, watering experiments have been performed at selected radon measurement points. After watering, radon flux decreased within 5 min by a factor of 2-7 depending on the point. Subsequently, it returned to its original value, firstly, by an initial partial recovery within 3-4h, followed by a slow relaxation, lasting around 10h and possibly superimposed by diurnal variations. Monsoon, in this part of the Himalayas, proceeds generally by brutal rainfall events separated by two- or three-day lapses. Thus, the recovery ability shown in the watering experiments accounts for the observed long-term persistence of gas discharge. This persistence is an important asset for long-term monitoring, for example to study possible temporal variations associated with stress accumulation and release.


Subject(s)
Air Pollutants, Radioactive/analysis , Hot Springs/chemistry , Radon/analysis , Carbon Dioxide/analysis , Nepal , Radiation Monitoring , Rain , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...