Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Drug Discov ; 19(6): 671-682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722032

ABSTRACT

INTRODUCTION: For rational drug design, it is crucial to understand the receptor-drug binding processes and mechanisms. A new era for the use of computer simulations in predicting drug-receptor interactions at an atomic level has begun with remarkable advances in supercomputing and methodological breakthroughs. AREAS COVERED: End-point free energy calculation methods such as Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) or Molecular-Mechanics/Generalized Born Surface Area (MM/GBSA), free energy perturbation (FEP), and thermodynamic integration (TI) are commonly used for binding free energy calculations in drug discovery. In addition, kinetic dissociation and association rate constants (koff and kon) play critical roles in the function of drugs. Nowadays, Molecular Dynamics (MD) and enhanced sampling simulations are increasingly being used in drug discovery. Here, the authors provide a review of the computational techniques used in drug binding free energy and kinetics calculations. EXPERT OPINION: The applications of computational methods in drug discovery and design are expanding, thanks to improved predictions of the binding free energy and kinetic rates of drug molecules. Recent microsecond-timescale enhanced sampling simulations have made it possible to accurately capture repetitive ligand binding and dissociation, facilitating more efficient and accurate calculations of ligand binding free energy and kinetics.


Subject(s)
Drug Design , Drug Discovery , Molecular Dynamics Simulation , Thermodynamics , Humans , Computer Simulation , Drug Discovery/methods , Kinetics , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Protein Binding
2.
J Chem Theory Comput ; 19(8): 2135-2148, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36989090

ABSTRACT

Biomolecular binding kinetics including the association (kon) and dissociation (koff) rates are critical parameters for therapeutic design of small-molecule drugs, peptides, and antibodies. Notably, the drug molecule residence time or dissociation rate has been shown to correlate with their efficacies better than binding affinities. A wide range of modeling approaches including quantitative structure-kinetic relationship models, Molecular Dynamics simulations, enhanced sampling, and Machine Learning has been developed to explore biomolecular binding and dissociation mechanisms and predict binding kinetic rates. Here, we review recent advances in computational modeling of biomolecular binding kinetics, with an outlook for future improvements.


Subject(s)
Antibodies , Peptides , Kinetics , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...