Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nano Lett ; 19(6): 3409-3414, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31038971

ABSTRACT

The anomalous Hall effect (AHE) is a nonlinear Hall effect appearing in magnetic conductors, boosted by internal magnetism beyond what is expected from the ordinary Hall effect. With the recent discovery of the quantized version of the AHE, the quantum anomalous Hall effect (QAHE), in Cr- or V-doped topological insulator (TI) (Sb,Bi)2Te3 thin films, the AHE in magnetic TIs has been attracting significant interest. However, one of the puzzles in this system has been that while Cr- or V-doped (Sb,Bi)2Te3 and V-doped Bi2Se3 exhibit AHE, Cr-doped Bi2Se3 has failed to exhibit even ferromagnetic AHE, the expected predecessor to the QAHE, though it is the first material predicted to exhibit the QAHE. Here, we have successfully implemented ferromagnetic AHE in Cr-doped Bi2Se3 thin films by utilizing a surface state engineering scheme. Surprisingly, the observed ferromagnetic AHE in the Cr-doped Bi2Se3 thin films exhibited only a positive slope regardless of the carrier type. We show that this sign problem can be explained by the intrinsic Berry curvature of the system as calculated from a tight-binding model combined with a first-principles method.

2.
Nat Commun ; 9(1): 2492, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29950680

ABSTRACT

Charge-to-spin conversion in various materials is the key for the fundamental understanding of spin-orbitronics and efficient magnetization manipulation. Here we report the direct spatial imaging of current-induced spin accumulation at the channel edges of Bi2Se3 and BiSbTeSe2 topological insulators as well as Pt by a scanning photovoltage microscope at room temperature. The spin polarization is along the out-of-plane direction with opposite signs for the two channel edges. The accumulated spin direction reverses sign upon changing the current direction and the detected spin signal shows a linear dependence on the magnitude of currents, indicating that our observed phenomena are current-induced effects. The spin Hall angle of Bi2Se3, BiSbTeSe2, and Pt is determined to be 0.0085, 0.0616, and 0.0085, respectively. Our results open up the possibility of optically detecting the current-induced spin accumulations, and thus point towards a better understanding of the interaction between spins and circularly polarized light.

3.
Nano Lett ; 18(2): 820-826, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29313354

ABSTRACT

Bi2Se3, one of the most widely studied topological insulators (TIs), is naturally electron-doped due to n-type native defects. However, many years of efforts to achieve p-type Bi2Se3 thin films have failed so far. Here, we provide a solution to this long-standing problem, showing that the main culprit has been the high density of interfacial defects. By suppressing these defects through an interfacial engineering scheme, we have successfully implemented p-type Bi2Se3 thin films down to the thinnest topological regime. On this platform, we present the first tunable quantum Hall effect (QHE) study in Bi2Se3 thin films and reveal not only significantly asymmetric QHE signatures across the Dirac point but also the presence of competing anomalous states near the zeroth Landau level. The availability of doping tunable Bi2Se3 thin films will now make it possible to implement various topological quantum devices, previously inaccessible.

4.
J Phys Condens Matter ; 29(18): 183002, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28362633

ABSTRACT

After the discovery of Dirac electrons in condensed matter physics, more specifically in graphene and its derivatives, their potentialities in the fields of plasmonics and photonics have been readily recognized, leading to a plethora of applications in active and tunable optical devices. Massless Dirac carriers have been further found in three-dimensional topological insulators. These exotic quantum systems have an insulating gap in the bulk and intrinsic Dirac metallic states at any surface, sustaining not only single-particle excitations but also plasmonic collective modes. In this paper we will review the plasmon excitations in different microstructures patterned on Bi2Se3 topological insulator thin films as measured by terahertz spectroscopy. We discuss the dependence of the plasmon absorption versus the microstructure shape, wavevector, and magnetic field. Finally we will discuss the topological protection of both the Dirac single-particle and plasmon excitations.

5.
Sci Adv ; 3(3): e1501692, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28378013

ABSTRACT

Engineered lattices in condensed matter physics, such as cold-atom optical lattices or photonic crystals, can have properties that are fundamentally different from those of naturally occurring electronic crystals. We report a novel type of artificial quantum matter lattice. Our lattice is a multilayer heterostructure built from alternating thin films of topological and trivial insulators. Each interface within the heterostructure hosts a set of topologically protected interface states, and by making the layers sufficiently thin, we demonstrate for the first time a hybridization of interface states across layers. In this way, our heterostructure forms an emergent atomic chain, where the interfaces act as lattice sites and the interface states act as atomic orbitals, as seen from our measurements by angle-resolved photoemission spectroscopy. By changing the composition of the heterostructure, we can directly control hopping between lattice sites. We realize a topological and a trivial phase in our superlattice band structure. We argue that the superlattice may be characterized in a significant way by a one-dimensional topological invariant, closely related to the invariant of the Su-Schrieffer-Heeger model. Our topological insulator heterostructure demonstrates a novel experimental platform where we can engineer band structures by directly controlling how electrons hop between lattice sites.

6.
Nano Lett ; 16(9): 5528-32, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27558142

ABSTRACT

In a topological insulator (TI), if its spin-orbit coupling (SOC) strength is gradually reduced, the TI eventually transforms into a trivial insulator beyond a critical point of SOC, at which point the bulk gap closes: this is the standard description of the topological phase transition (TPT). However, this description of TPT, driven solely by the SOC (or something equivalent) and followed by closing and reopening of the bulk band gap, is valid only for infinite-size samples, and little is known how TPT occurs for finite-size samples. Here, using both systematic transport measurements on interface-engineered (Bi1-xInx)2Se3 thin films and theoretical simulations (with animations in the Supporting Information), we show that description of TPT in finite-size samples needs to be substantially modified from the conventional picture of TPT due to surface-state hybridization and bulk confinement effects. We also show that the finite-size TPT is composed of two separate transitions, topological-normal transition (TNT) and metal-insulator transition (MIT), by providing a detailed phase diagram in the two-dimensional phase space of sample size and SOC strength.

7.
Nat Commun ; 7: 11421, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27113395

ABSTRACT

Electrons with a linear energy/momentum dispersion are called massless Dirac electrons and represent the low-energy excitations in exotic materials such as graphene and topological insulators. Dirac electrons are characterized by notable properties such as a high mobility, a tunable density and, in topological insulators, a protection against backscattering through the spin-momentum locking mechanism. All those properties make graphene and topological insulators appealing for plasmonics applications. However, Dirac electrons are expected to present also a strong nonlinear optical behaviour. This should mirror in phenomena such as electromagnetic-induced transparency and harmonic generation. Here we demonstrate that in Bi2Se3 topological insulator, an electromagnetic-induced transparency is achieved under the application of a strong terahertz electric field. This effect, concomitantly determined by harmonic generation and charge-mobility reduction, is exclusively related to the presence of Dirac electron at the surface of Bi2Se3, and opens the road towards tunable terahertz nonlinear optical devices based on topological insulator materials.

8.
Nanoscale ; 8(8): 4667-71, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-26852877

ABSTRACT

A 3D Topological Insulator (TI) is an intrinsically stratified electronic material characterized by an insulating bulk and Dirac free electrons at the interface with vacuum or another dielectric. In this paper, we investigate, through terahertz (THz) spectroscopy, the plasmon excitation of Dirac electrons on thin films of (Bi1-xInx)2Se3 TI patterned in the form of a micro-ribbon array, across a Quantum Phase Transition (QPT) from the topological to a trivial insulating phase. The latter is achieved by In doping onto the Bi-site and is characterized by massive electrons at the surface. While the plasmon frequency is nearly independent of In content, the plasmon width undergoes a sudden broadening across the QPT, perfectly mirroring the single particle (free electron) behavior as measured on the same films. This strongly suggests that the topological protection from backscattering characterizing Dirac electrons in the topological phase extends also to their plasmon excitations.

9.
Nano Lett ; 15(12): 8245-9, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26583739

ABSTRACT

Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In2Se3/(Bi0.5In0.5)2Se3 heterostructure, we introduce a quantum generation of Bi2Se3 films with an order of magnitude enhanced mobilities than before. This scheme has led to the first observation of the quantum Hall effect in Bi2Se3.

10.
Nat Commun ; 6: 8814, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26514372

ABSTRACT

Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 µJ cm(-2). This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon-phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth.

11.
Phys Rev Lett ; 114(25): 257202, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26197141

ABSTRACT

The three dimensional topological insulator bismuth selenide (Bi(2)Se(3)) is expected to possess strong spin-orbit coupling and spin-textured topological surface states and, thus, exhibit a high charge to spin current conversion efficiency. We evaluate spin-orbit torques in Bi(2)Se(3)/Co(40)Fe(40)B(20) devices at different temperatures by spin torque ferromagnetic resonance measurements. As the temperature decreases, the spin-orbit torque ratio increases from ∼0.047 at 300 K to ∼0.42 below 50 K. Moreover, we observe a significant out-of-plane torque at low temperatures. Detailed analysis indicates that the origin of the observed spin-orbit torques is topological surface states in Bi(2)Se(3). Our results suggest that topological insulators with strong spin-orbit coupling could be promising candidates as highly efficient spin current sources for exploring the next generation of spintronic applications.

12.
Phys Rev Lett ; 113(2): 026801, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062217

ABSTRACT

In ideal topological insulator (TI) films the bulk state, which is supposed to be insulating, should not provide any electric coupling between the two metallic surfaces. However, transport studies on existing TI films show that the topological states on opposite surfaces are electrically tied to each other at thicknesses far greater than the direct coupling limit where the surface wave functions overlap. Here, we show that as the conducting bulk channels are suppressed, the parasitic coupling effect diminishes, and the decoupled surface channels emerge as expected for ideal TIs. In Bi(2)Se(3) thin films with fully suppressed bulk states, the two surfaces, which are directly coupled below ∼10 QL, become gradually isolated with increasing thickness and are completely decoupled beyond ∼20 QL. On such a platform, it is now feasible to implement transport devices whose functionality relies on accessing the individual surface layers without any deleterious coupling effects.

13.
Nano Lett ; 14(3): 1343-8, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24576215

ABSTRACT

Mechanical exfoliation of bulk crystals has been widely used to obtain thin topological insulator (TI) flakes for device fabrication. However, such a process produces only microsized flakes that are highly irregular in shape and thickness. In this work, we developed a process to transfer the entire area of TI Bi2Se3 thin films grown epitaxially on Al2O3 and SiO2 to arbitrary substrates, maintaining their pristine morphology and crystallinity. Transport measurements show that these transferred films have lower carrier concentrations and comparable or higher mobilities than before the transfer. Furthermore, using this process we demonstrated a clear metal-insulator transition in an ultrathin Bi2Se3 film by gate-tuning its Fermi level into the hybridization gap formed at the Dirac point. The ability to transfer large area TI films to any substrate will facilitate fabrication of TI heterostructure devices, which will help explore exotic phenomena such as Majorana fermions and topological magnetoelectricity.

14.
Phys Rev Lett ; 109(18): 186403, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23215303

ABSTRACT

By combining transport and photoemission measurements on (Bi(1-x)In(x))(2)Se(3) thin films, we report that this system transforms from a topologically nontrivial metal into a topologically trivial band insulator through three quantum phase transitions. At x ≈ 3%-7%, there is a transition from a topologically nontrivial metal to a trivial metal. At x ≈ 15%, the metal becomes a variable-range-hopping insulator. Finally, above x ≈ 25%, the system becomes a true band insulator with its resistance immeasurably large even at room temperature. This material provides a new venue to investigate topologically tunable physics and devices with seamless gating or tunneling insulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...