Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Travel Med Infect Dis ; : 102730, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830442

ABSTRACT

BACKGROUND: Travel-related strategies to reduce the spread of COVID-19 evolved rapidly in response to changes in the understanding of SARS-CoV-2 and newly available tools for prevention, diagnosis, and treatment. Modeling is an important methodology to investigate the range of outcomes that could occur from different disease containment strategies. METHODS: We examined 43 articles published from December 2019 through September 2022 that used modeling to evaluate travel-related COVID-19 containment strategies. We extracted and synthesized data regarding study objectives, methods, outcomes, populations, settings, strategies, and costs. We used a standardized approach to evaluate each analysis according to 26 criteria for modeling quality and rigor. RESULTS: The most frequent approaches included compartmental modeling to examine quarantine, isolation, or testing. Early in the pandemic, the goal was to prevent travel-related COVID-19 cases with a focus on individual-level outcomes and assessing strategies such as travel restrictions, quarantine without testing, social distancing, and on-arrival PCR testing. After the development of diagnostic tests and vaccines, modeling studies projected population-level outcomes and investigated these tools to limit COVID-19 spread. Very few published studies included rapid antigen screening strategies, costs, explicit model calibration, or critical evaluation of the modeling approaches. CONCLUSION: Future modeling analyses should leverage open-source data, improve the transparency of modeling methods, incorporate newly available prevention, diagnostics, and treatments, and include costs and cost-effectiveness so that modeling analyses can be informative to address future SARS-CoV-2 variants of concern and other emerging infectious diseases (e.g., mpox and Ebola) for travel-related health policies.

2.
J Travel Med ; 30(5)2023 09 05.
Article in English | MEDLINE | ID: mdl-37535890

ABSTRACT

RATIONALE FOR REVIEW: This review aims to summarize the transmission patterns of influenza, its seasonality in different parts of the globe, air travel- and cruise ship-related influenza infections and interventions to reduce transmission. KEY FINDINGS: The seasonality of influenza varies globally, with peak periods occurring mainly between October and April in the northern hemisphere (NH) and between April and October in the southern hemisphere (SH) in temperate climate zones. However, influenza seasonality is significantly more variable in the tropics. Influenza is one of the most common travel-related, vaccine-preventable diseases and can be contracted during travel, such as during a cruise or through air travel. Additionally, travellers can come into contact with people from regions with ongoing influenza transmission. Current influenza immunization schedules in the NH and SH leave individuals susceptible during their respective spring and summer months if they travel to the other hemisphere during that time. CONCLUSIONS/RECOMMENDATIONS: The differences in influenza seasonality between hemispheres have substantial implications for the effectiveness of influenza vaccination of travellers. Health care providers should be aware of influenza activity when patients report travel plans, and they should provide alerts and advise on prevention, diagnostic and treatment options. To mitigate the risk of travel-related influenza, interventions include antivirals for self-treatment (in combination with the use of rapid self-tests), extending the shelf life of influenza vaccines to enable immunization during the summer months for international travellers and allowing access to the influenza vaccine used in the opposite hemisphere as a travel-related vaccine. With the currently available vaccines, the most important preventive measure involves optimizing the seasonal influenza vaccination. It is also imperative that influenza is recognized as a travel-related illness among both travellers and health care professionals.


Subject(s)
Air Travel , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Vaccination , Immunization Schedule , Travel-Related Illness , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...