Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 52(13): 2772-5, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26762483

ABSTRACT

Graphitic-C3N4 is shown for the first time to catalyse photoacetalization of aldehydes/ketones with alcohols to acetals in high yields using visible light under ambient conditions; transient charge separation over the material is effective to catalyse the reaction in the absence of Lewis or Brønsted acids, giving a new green alternative catalyst.

2.
Chemistry ; 20(26): 8068-75, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24861208

ABSTRACT

(31)P nuclear magnetic resonance (NMR) spectroscopic measurement with trimethylphosphine oxide (TMPO) was applied to evaluate the Lewis acid catalysis of various metal triflates in water. The original (31)P NMR chemical shift and line width of TMPO is changed by the direct interaction of TMPO molecules with the Lewis acid sites of metal triflates. [Sc(OTf)3] and [In(OTf)3] had larger changes in (31)P chemical shift and line width by formation of the Lewis acid-TMPO complex than other metal triflates. It originates from the strong interaction between the Lewis acid and TMPO, which results in higher stability of [Sc(OTf)3TMPO] and [In(OTf)3TMPO] complexes than other metal triflate-TMPO complexes. The catalytic activities of [Sc(OTf)3] and [In(OTf)3] for Lewis acid-catalyzed reactions with carbonyl compounds in water were far superior to the other metal triflates, which indicates that the high stability of metal triflate-carbonyl compound complexes cause high catalytic performance for these reactions. Density functional theory (DFT) calculation suggests that low LUMO levels of [Sc(OTf)3] and [In(OTf)3] would be responsible for the formation of stable coordination intermediate with nucleophilic reactant in water.

SELECTION OF CITATIONS
SEARCH DETAIL
...