Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36227591

ABSTRACT

Ventral tail bending, which is transient but pronounced, is found in many chordate embryos and constitutes an interesting model of how tissue interactions control embryo shape. Here, we identify one key upstream regulator of ventral tail bending in embryos of the ascidian Ciona. We show that during the early tailbud stages, ventral epidermal cells exhibit a boat-shaped morphology (boat cell) with a narrow apical surface where phosphorylated myosin light chain (pMLC) accumulates. We further show that interfering with the function of the BMP ligand Admp led to pMLC localizing to the basal instead of the apical side of ventral epidermal cells and a reduced number of boat cells. Finally, we show that cutting ventral epidermal midline cells at their apex using an ultraviolet laser relaxed ventral tail bending. Based on these results, we propose a previously unreported function for Admp in localizing pMLC to the apical side of ventral epidermal cells, which causes the tail to bend ventrally by resisting antero-posterior notochord extension at the ventral side of the tail.


Subject(s)
Ciona intestinalis , Ciona , Animals , Ciona intestinalis/metabolism , Ciona/metabolism , Myosin Light Chains/metabolism , Ligands , Epidermal Cells/metabolism , Tail/metabolism
2.
Commun Biol ; 4(1): 341, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727646

ABSTRACT

During the developmental processes of embryos, cells undergo massive deformation and division that are regulated by mechanical cues. However, little is known about how embryonic cells change their mechanical properties during different cleavage stages. Here, using atomic force microscopy, we investigated the stiffness of cells in ascidian embryos from the fertilised egg to the stage before gastrulation. In both animal and vegetal hemispheres, we observed a Rho kinase (ROCK)-independent cell stiffening that the cell stiffness exhibited a remarkable increase at the timing of cell division where cortical actin filaments were organized. Furthermore, in the vegetal hemisphere, we observed another mechanical behaviour, i.e., a ROCK-associated cell stiffening, which was retained even after cell division or occurred without division and propagated sequentially toward adjacent cells, displaying a characteristic cell-to-cell mechanical variation. The results indicate that the mechanical properties of embryonic cells are regulated at the single cell level in different germ layers.


Subject(s)
Actin Cytoskeleton/metabolism , Ciona intestinalis/embryology , Embryo, Nonmammalian/enzymology , Mechanotransduction, Cellular , rho-Associated Kinases/metabolism , Animals , Cell Cycle Checkpoints , Elastic Modulus , Embryo, Nonmammalian/cytology , Embryonic Development , Microscopy, Atomic Force , Mitosis , Myosins/metabolism , Single-Cell Analysis , Time Factors
3.
Dev Biol ; 460(2): 215-223, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31981562

ABSTRACT

The tailbud stage is part of the organogenesis period-an evolutionarily conserved developmental period among chordates that is essential for determining the characteristics of the chordate body plan. When the volume of the egg is artificially decreased by cutting, ascidians produce a normal-looking but miniature (dwarf) tailbud embryo. Although cell lineages during ascidian embryogenesis are invariant, the number of cell divisions in the dwarf embryo is altered by a different mechanism in each tissue (Yamada and Nishida, 1999). Here, to elucidate the size-regulation strategies of the Ciona robusta dwarf tailbud embryo, we compared anatomical structure, developmental speed, and cell number/volume in each tissue between dwarf and wild type (WT) embryos. To do this, we constructed a 3D virtual mid-tailbud embryo (Nakamura et al., 2012). We could make a Ciona dwarf tailbud embryo from eggs with a diameter over 108 â€‹µm (correspond to â€‹> â€‹40% of the wild type egg volume). The timings of cleavage (~St. 12) and subsequent morphogenesis were nearly the same but blastomeres of animal hemisphere slightly delayed the timing of mitosis in the early cleavage period. Intriguingly, the tissue-to-tissue volume ratios of dwarf tailbud embryos were similar to those of wild type embryos suggesting that the ratio of tissue volumes is essential for maintaining the proper shape of the tailbud embryo. The number of cells in the epidermis, nervous system, and mesenchyme was significantly reduced in the dwarf embryos whereas the cell volume distribution of these tissues was similar in the dwarf and wild type. In contrast, the number of cells in the notochord, muscle, heart, and endoderm were maintained in the dwarf embryos; cell volumes were significantly reduced. Neither parameter changed in germline precursors. These results indicate that each tissue uses different scaling strategies to coordinate cell number and cell volume in accordance with the embryo size.


Subject(s)
Ciona/embryology , Embryo, Nonmammalian/embryology , Morphogenesis , Single-Cell Analysis , Animals , Ciona/cytology , Ciona/genetics , Embryo, Nonmammalian/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...