Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Transgenic Res ; 27(4): 321-329, 2018 08.
Article in English | MEDLINE | ID: mdl-29728956

ABSTRACT

Most regulations worldwide stipulate that a new genetically modified (GM) crop event has to be compared to its closest non-GM counterpart as a corner stone of the pre-market risk assessment. To this end the GM crop and its comparator should be grown in field trials for a phenotypic comparison as well as for subsequent detailed analysis of the composition of the two crop varieties. A more in-depth globally harmonised approach for the conduct of these field trials is lacking. Only a few countries have formulated detailed protocols for the set-up of GM field trials. In some countries, commercial non-GM reference varieties need to be included in a field study to compile reliable data that indicate the range of natural variation for the compounds tested at the specific location. Detailed analysis of pre-market assessment reports have so far not shown the added value of including these reference varieties in the field trials. In all cases where specific values were found to be outside of the range of the reference varieties, it proved possible to draw conclusions on the part of the pre-market risk assessment that relates to the compositional analysis, on the basis of already available compositional data. With the increasing quality of several databases on compositional data of a growing number of crop species, it seems unlikely that reference varieties will become more important on future occasions. It was furthermore investigated whether this part of the risk assessment can be related to field trial requirements for variety registration with the explicit intention of reducing the data burden on producers of new GM plant varieties. Field trials for variety registration so far include an assessment of phenotypic characteristics that do not cover safety aspects, with the exception of establishment of the glycoalkaloid content in potatoes in the Netherlands and Sweden. It may, however, under certain conditions be relatively easy to exchange data from compositional measurements between variety registration and GM testing procedures, thus laying a foundation for testing the feasibility of combining both pre-market assessment procedures in a single pre-market evaluation path.


Subject(s)
Food, Genetically Modified , Plants, Genetically Modified/genetics , Solanum tuberosum/genetics , Agriculture , Humans , Netherlands , Plants, Genetically Modified/growth & development , Research , Risk Assessment , Solanum tuberosum/growth & development , Sweden
2.
Anal Bioanal Chem ; 396(6): 2213-27, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20012027

ABSTRACT

To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.


Subject(s)
Crops, Agricultural/genetics , Plants, Genetically Modified/genetics , Polymerase Chain Reaction/methods
3.
Food Chem Toxicol ; 47(5): 992-1008, 2009 May.
Article in English | MEDLINE | ID: mdl-18790713

ABSTRACT

A number of recent food safety incidents have involved chemical substances, while various activities aim at the early identification of emerging chemical risks. This review considers recent cases of chemical and biochemical risks, as a basis for recommendations for awareness and prevention of similar risks at an early stage. These cases include examples of unapproved genetically modified food crops, intoxications with botanical products containing unintentionally admixed toxic herbs, residues of unapproved antibiotics and contaminants in farmed aquaculture species such as shrimp and salmon; and adverse effects of chemical and biological pesticides of natural origin. Besides case-specific recommendations for mitigation of future incidents of the same nature, general inferences and recommendations are made. It is recommended, for example, to establish databases for contaminants potentially present within products. Pro-active reconnaissance can facilitate the identification of products potentially contaminated with hazardous substances. In international trade, prevention and early identification of hazards are aided by management systems for product quality and safety, rigorous legislation, and inspections of consignments destined for export. Cooperation with the private sector and foreign authorities may be required to achieve these goals. While food and feed safety are viewed from the European perspective, the outcomes also apply to other regions.


Subject(s)
Animal Feed/standards , Consumer Product Safety , Food Contamination/prevention & control , Food Supply/standards , Aquaculture/standards , Food Microbiology , Food, Genetically Modified , Humans , Pesticide Residues/analysis , Plants, Genetically Modified , Product Surveillance, Postmarketing , Risk Assessment
4.
Regul Toxicol Pharmacol ; 50(1): 98-113, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17983697

ABSTRACT

The second generation of genetically modified (GM) plants that are moving towards the market are characterized by modifications that may be more complex and traits that more often are to the benefit of the consumer. These developments will have implications for the safety assessment of the resulting plant products. In part of the cases the same crop plant can, however, also be obtained by 'conventional' breeding strategies. The breeder will decide on a case-by-case basis what will be the best strategy to reach the set target and whether genetic modification will form part of this strategy. This article discusses important aspects of the safety assessment of complex products derived from newly bred plant varieties obtained by different breeding strategies. On the basis of this overview, we conclude that the current process of the safety evaluation of GM versus conventionally bred plants is not well balanced. GM varieties are elaborately assessed, yet at the same time other crop plants resulting from conventional breeding strategies may warrant further food safety assessment for the benefit of the consumer. We propose to develop a general screening frame for all newly developed plant varieties to select varieties that cannot, on the basis of scientific criteria, be considered as safe as plant varieties that are already on the market.


Subject(s)
Food, Genetically Modified/adverse effects , Plants, Edible/adverse effects , Plants, Genetically Modified/adverse effects , Breeding , Consumer Product Safety , Humans , Legislation, Food , Risk Assessment
5.
Plant Biol (Stuttg) ; 8(5): 662-72, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16933176

ABSTRACT

Genetically modified plants must be approved before release in the European Union, and the approval is generally based upon a comparison of various characteristics between the transgenic plant and a conventional counterpart. As a case study, focusing on safety assessment of genetically modified plants, we here report the development and characterisation of six independently transformed ARABIDOPSIS THALIANA lines modified in the flavonoid biosynthesis. Analyses of integration events and comparative analysis for characterisation of the intended effects were performed by PCR, quantitative Real-time PCR, and High Performance Liquid Chromatography. Analysis by cDNA microarray was used as a non-targeted approach for the identification of potential unintended effects caused by the transformation. The results revealed that, although the transgenic lines possessed different types of integration events, no unintended effects were identified. However, we found that the majority of genes showing differential expression were identified as stress-related genes and that environmental conditions had a large impact on the expression of several genes, proteins, and metabolites. We suggest that the microarray approach has the potential to become a useful tool for screening of unintended effects, but state that it is crucial to have substantial information on the natural variation in traditional crops in order to be able to interpret "omics" data correctly within the framework of food safety assessment strategies of novel plant varieties, including genetically modified plant varieties.


Subject(s)
Arabidopsis/genetics , Genomics/methods , Plants, Genetically Modified/genetics , Risk Assessment/methods , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatography, High Pressure Liquid , Environment , European Union , Gene Expression Regulation, Plant , Genome, Plant , Polymerase Chain Reaction/methods , Protein Array Analysis
6.
Food Chem Toxicol ; 42(7): 1089-125, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15123383

ABSTRACT

The commercialisation of GM crops in Europe is practically non-existent at the present time. The European Commission has instigated changes to the regulatory process to address the concerns of consumers and member states and to pave the way for removing the current moratorium. With regard to the safety of GM crops and products, the current risk assessment process pays particular attention to potential adverse effects on human and animal health and the environment. This document deals with the concept of unintended effects in GM crops and products, i.e. effects that go beyond that of the original modification and that might impact primarily on health. The document first deals with the potential for unintended effects caused by the processes of transgene insertion (DNA rearrangements) and makes comparisons with genetic recombination events and DNA rearrangements in traditional breeding. The document then focuses on the potential value of evolving "profiling" or "omics" technologies as non-targeted, unbiased approaches, to detect unintended effects. These technologies include metabolomics (parallel analysis of a range of primary and secondary metabolites), proteomics (analysis of polypeptide complement) and transcriptomics (parallel analysis of gene expression). The technologies are described, together with their current limitations. Importantly, the significance of unintended effects on consumer health are discussed and conclusions and recommendations presented on the various approaches outlined.


Subject(s)
Consumer Product Safety , Food Analysis , Food Supply , Food, Genetically Modified/adverse effects , Plants, Genetically Modified/adverse effects , Risk Assessment/methods , Animals , European Union , Food Analysis/methods , Genetic Engineering , Humans , International Cooperation
7.
Food Chem Toxicol ; 42(7): 1157-80, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15123385

ABSTRACT

Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend this labelling to foods without any traces of transgenics. These new legislations would also impose labelling and a traceability system based on documentation throughout the food and feed manufacture system. The regulatory issues of risk analysis and labelling are currently harmonised by Codex Alimentarius. The implementation and maintenance of the regulations necessitates sampling protocols and analytical methodologies that allow for accurate determination of the content of genetically modified organisms within a food and feed sample. Current methodologies for the analysis of genetically modified organisms are focused on either one of two targets, the transgenic DNA inserted- or the novel protein(s) expressed- in a genetically modified product. For most DNA-based detection methods, the polymerase chain reaction is employed. Items that need consideration in the use of DNA-based detection methods include the specificity, sensitivity, matrix effects, internal reference DNA, availability of external reference materials, hemizygosity versus homozygosity, extrachromosomal DNA, and international harmonisation. For most protein-based methods, enzyme-linked immunosorbent assays with antibodies binding the novel protein are employed. Consideration should be given to the selection of the antigen bound by the antibody, accuracy, validation, and matrix effects. Currently, validation of detection methods for analysis of genetically modified organisms is taking place. In addition, new methodologies are developed, including the use of microarrays, mass spectrometry, and surface plasmon resonance. Challenges for GMO detection include the detection of transgenic material in materials with varying chromosome numbers. The existing and proposed regulatory EU requirements for traceability of genetically modified products fit within a broader tendency towards traceability of foods in general and, commercially, towards products that can be distinguished from each other. Traceability systems document the history of a product and may serve the purpose of both marketing and health protection. In this framework, segregation and identity preservation systems allow for the separation of genetically modified and non-modified products from "farm to fork". Implementation of these systems comes with specific technical requirements for each particular step of the food processing chain. In addition, the feasibility of traceability systems depends on a number of factors, including unique identifiers for each genetically modified product, detection methods, permissible levels of contamination, and financial costs. In conclusion, progress has been achieved in the field of sampling, detection, and traceability of genetically modified products, while some issues remain to be solved. For success, much will depend on the threshold level for adventitious contamination set by legislation.


Subject(s)
Consumer Product Safety/legislation & jurisprudence , Food Analysis/legislation & jurisprudence , Food Supply/legislation & jurisprudence , Food, Genetically Modified/adverse effects , Organisms, Genetically Modified , Plants, Genetically Modified/adverse effects , Risk Assessment/methods , Animals , Consumer Product Safety/standards , Food Analysis/methods , Food Analysis/standards , Food, Genetically Modified/standards , Genetic Engineering , Humans , International Cooperation , Plants, Genetically Modified/genetics
8.
Ned Tijdschr Geneeskd ; 147(2): 56-60, 2003 Jan 11.
Article in Dutch | MEDLINE | ID: mdl-12602068

ABSTRACT

The genetically modified (GM) crops cultivated at present have new properties of benefit to agriculture. It is expected that in the future GM crops will also be cultivated with more complex genetic modifications that are aimed at improving the nutritional and health value to the consumer. The safety assessment of GM foods before market approval is based on a comparison of the characteristics of the GM food with those of the conventional counterpart. Identified differences are thoroughly tested for their toxicological and nutritional consequences. Supplementary modern analytical techniques are being developed for the assessment of future complex GM foods. No cases of adverse health or nutritional effects in consumers have been reported for the existing generation of GM foods. The feasibility of post-market surveillance of (GM) foods, in order to identify small or chronic effects that have not been noticed in the pre-market phase, is being investigated, yet its value should not be overestimated. Surveillance can be informative in case of specific questions concerning certain products as long as the consumer intake is well documented. To this end traceability and labelling systems must be set up.


Subject(s)
Food, Genetically Modified , Nutritional Physiological Phenomena , Consumer Behavior , Consumer Product Safety , Humans , Plants, Genetically Modified , Product Surveillance, Postmarketing , Public Health
10.
Plant J ; 27(6): 503-28, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11576435

ABSTRACT

International consensus has been reached on the principles regarding evaluation of the food safety of genetically modified plants. The concept of substantial equivalence has been developed as part of a safety evaluation framework, based on the idea that existing foods can serve as a basis for comparing the properties of genetically modified foods with the appropriate counterpart. Application of the concept is not a safety assessment per se, but helps to identify similarities and differences between the existing food and the new product, which are then subject to further toxicological investigation. Substantial equivalence is a starting point in the safety evaluation, rather than an endpoint of the assessment. Consensus on practical application of the principle should be further elaborated. Experiences with the safety testing of newly inserted proteins and of whole genetically modified foods are reviewed, and limitations of current test methodologies are discussed. The development and validation of new profiling methods such as DNA microarray technology, proteomics, and metabolomics for the identification and characterization of unintended effects, which may occur as a result of the genetic modification, is recommended. The assessment of the allergenicity of newly inserted proteins and of marker genes is discussed. An issue that will gain importance in the near future is that of post-marketing surveillance of the foods derived from genetically modified crops. It is concluded, among others that, that application of the principle of substantial equivalence has proven adequate, and that no alternative adequate safety assessment strategies are available.


Subject(s)
Genetic Engineering , Legislation, Food , Plants, Edible/genetics , Risk Assessment/methods , Safety/legislation & jurisprudence , World Health Organization
11.
J Biotechnol ; 78(3): 271-80, 2000 Mar 31.
Article in English | MEDLINE | ID: mdl-10751688

ABSTRACT

DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.


Subject(s)
Gene Expression , Oligonucleotide Array Sequence Analysis , Biotechnology , Food Technology , Genetic Engineering , Humans , Plants, Edible/genetics , Safety
12.
Food Addit Contam ; 15(7): 767-74, 1998 Oct.
Article in English | MEDLINE | ID: mdl-10211183

ABSTRACT

A method has been developed to distinguish between traditional soy beans and transgenic Roundup Ready soy beans, i.e. the glyphosate ('Roundup') resistant soy bean variety developed by Monsanto Company. Glyphosate resistance results from the incorporation of an Agrobacterium-derived 5-enol-pyruvyl-shikimate-3-phosphatesynthase (EPSPS) gene. The detection method developed is based on a nested Polymerase Chain Reaction (PCR) procedure. Ten femtograms of soy bean DNA can be detected, while, starting from whole soy beans, Roundup Ready DNA can be detected at a level of 1 Roundup Ready soy bean in 5000 non-GM soy beans (0.02% Roundup Ready soy bean). The method has been applied to samples of soy bean, soy-meal pellets and soy bean flour, as well as a number of processed complex products such as infant formula based on soy, tofu, tempeh, soy-based desserts, bakery products and complex meat and meat-replacing products. The results obtained are discussed with respect to practical application of the detection method developed.


Subject(s)
Genetic Engineering , Glycine max/genetics , Plants, Genetically Modified , Polymerase Chain Reaction/methods , DNA, Plant/analysis , DNA, Plant/genetics , Food Technology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...