Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pulm Pharmacol Ther ; 83: 102269, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967760

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a respiratory condition characterized by its heterogeneous nature, progressive course, and significant impact on individuals' quality of life. It is a prevalent global health issue affecting a substantial number of individuals and can pose life-threatening complications if left unmanaged. The development and course of COPD can be influenced by a range of risk factors, including genetic predisposition and environmental exposures. Nevertheless, as researchers adopt a more comprehensive and expansive viewpoint of therapeutic techniques, the associated obstacles become more apparent. Indeed, a definitive medication for COPD that reliably leads to symptom alleviation has not yet been discovered. Therefore, the limitations of conventional therapy methods prompted researchers to focus on the advancement of novel procedures, potentially leading to significant outcomes. In contemporary times, the field of regenerative medicine and cell therapy has presented unprecedented opportunities for the exploration of innovative treatments for COPD, owing to the distinctive attributes exhibited by stem cells. Hence, it is imperative to provide due consideration to preclinical investigations and notable characteristics of stem cells as they serve as a means to comprehensively comprehend the fundamental mechanisms of COPD and uncover novel therapeutic strategies with enhanced efficacy for patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Risk Factors , Stem Cells
2.
Methods Mol Biol ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37801254

ABSTRACT

Psoriasis is a chronic, inflammatory, autoimmune disease with systemic symptoms including seborrheic psoriasis, pustular lesions, plaque lesions, intestinal eruptions, and sometimes arthritis. Moreover, most of the psoriatic subjects report life challenges due to the condition, impacting social activities and daily tasks. Generally, psoriasis treatment options depend on the severity, coexisting conditions, and medical availability. Although psoriasis therapies reduce symptoms and appearance, still it is not curable. Hereupon, searching for optimal therapeutic options continues. Accordingly, stem cell therapy is considered an advanced psoriasis treatment. Subsequently, stem cell therapies' efficacy is uncertain yet. Therefore, further studies are needed. In this context, preclinical studies such as animal experiments are essential for evaluation of treatment modalities. Herein, zebrafish offer advantages in testing treatments and biomedical research applications compared to other vertebrate models. Further, zebrafish skin shares similarities with human skin, making it suitable for studying inflammatory disorders. Hence, the authors discuss the zebrafish psoriasis development method for evaluating the stem cell therapeutic influence.

4.
Front Neurol ; 12: 788462, 2021.
Article in English | MEDLINE | ID: mdl-35111126

ABSTRACT

Amyotrophic lateral sclerosis is a pernicious neurodegenerative disorder that is associated with the progressive degeneration of motor neurons, the disruption of impulse transmission from motor neurons to muscle cells, and the development of mobility impairments. Clinically, muscle paralysis can spread to other parts of the body. Hence it may have adverse effects on swallowing, speaking, and even breathing, which serves as major problems facing these patients. According to the available evidence, no definite treatment has been found for amyotrophic lateral sclerosis (ALS) that results in a significant outcome, although some pharmacological and non-pharmacological treatments are currently applied that are accompanied by some positive effects. In other words, available therapies are only used to relieve symptoms without any significant treatment effects that highlight the importance of seeking more novel therapies. Unfortunately, the process of discovering new drugs with high therapeutic potential for ALS treatment is fraught with challenges. The lack of a broad view of the disease process from early to late-stage and insufficiency of preclinical studies for providing validated results prior to conducting clinical trials are other reasons for the ALS drug discovery failure. However, increasing the combined application of different fields of regenerative medicine, especially tissue engineering and stem cell therapy can be considered as a step forward to develop more novel technologies. For instance, organ on a chip is one of these technologies that can provide a platform to promote a comprehensive understanding of neuromuscular junction biology and screen candidate drugs for ALS in combination with pluripotent stem cells (PSCs). The structure of this technology is based on the use of essential components such as iPSC- derived motor neurons and iPSC-derived skeletal muscle cells on a single miniaturized chip for ALS modeling. Accordingly, an organ on a chip not only can mimic ALS complexities but also can be considered as a more cost-effective and time-saving disease modeling platform in comparison with others. Hence, it can be concluded that lab on a chip can make a major contribution as a biomimetic micro-physiological system in the treatment of neurodegenerative disorders such as ALS.

SELECTION OF CITATIONS
SEARCH DETAIL
...