Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2322670121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38470922

ABSTRACT

The bad metallic phase with resistivity above the Mott-Ioffe-Regel (MIR) limit, which appears also in cuprate superconductors, was recently understood by cold atom and computer simulations of the Hubbard model via charge susceptibility and charge diffusion constant. However, since reliable simulations can be typically done only at temperatures above the experimental temperatures, the question for cuprate superconductors is still open. This paper addresses this question by resorting to heat transport, which allows for the estimate of electronic diffusion and it further combines it with the resistivity to estimate the charge susceptibility. The doping and temperature dependencies of diffusion constant and charge susceptibilities are shown and discussed for two samples of YBa2Cu3O6+x. Results indicate strongly incoherent transport, mean free path corresponding to the MIR limit for the underdoped sample at temperatures above ~200 K and significant effect of the charge susceptibility on the resistivity.

2.
Sci Rep ; 9(1): 3478, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30837553

ABSTRACT

If simple guidelines could be established for understanding how quantum interference (QI) can be exploited to control the flow of electricity through single molecules, then new functional molecules, which exploit room-temperature QI could be rapidly identified and subsequently screened. Recently it was demonstrated that conductance ratios of molecules with aromatic cores, with different connectivities to electrodes, can be predicted using a simple and easy-to-use "magic number theory." In contrast with counting rules and "curly-arrow" descriptions of destructive QI, magic number theory captures the many forms of constructive QI, which can occur in molecular cores. Here we address the question of how conductance ratios are affected by electron-electron interactions. We find that due to cancellations of opposing trends, when Coulomb interactions and screening due to electrodes are switched on, conductance ratios are rather resilient. Consequently, qualitative trends in conductance ratios of molecules with extended pi systems can be predicted using simple 'non-interacting' magic number tables, without the need for large-scale computations. On the other hand, for certain connectivities, deviations from non-interacting conductance ratios can be significant and therefore such connectivities are of interest for probing the interplay between Coulomb interactions, connectivity and QI in single-molecule electron transport.

3.
Science ; 363(6425): 379-382, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30523078

ABSTRACT

Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model. We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.

SELECTION OF CITATIONS
SEARCH DETAIL
...