Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(6): 5242-5253, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187339

ABSTRACT

New push-pull N(9)-alkylated 6-piperidino-2-triazolylpurine and 2-piperidino-6-triazolylpurine derivatives are synthesized, and their optical and optoelectronic properties are comprehensively characterized with experimental and computational methods. The compounds possess intense violet or blue fluorescence with fluorescence quantum yields of up to 91% in solution and 40% in host-free films. Depending on their structural composition, the compounds have ionization energy in the range of 5.25-6.04 eV, electron affinity of 2.18-3.15 eV, and triplet energy of 2.52-2.95 eV. Due to the presence of hole-transporting purine and electron-transporting triazole fragments, compounds exhibit bipolar charge-transportation ability. Despite the favorable emissive properties of the studied push-pull purines, their electroluminescence in thin films is quenched owing to large current densities that are present even at a moderate driving voltage. This marks application directions related to a predominantly charge-transportation functionality as the most suitable for this compound class.

2.
J Org Chem ; 86(4): 3213-3222, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33512162

ABSTRACT

A series of 1H amorphous tri-phenyl pyridine (HAPPY) dyes have been synthesized from luminescent triphenyl-group-containing 2-methyl-6-styryl-substituted-4H-pyran-4-ylidene derivatives in reactions with benzylamine and investigated for suitability as solution-processable light-emitting medium components in thin films for amplified spontaneous emission (ASE). Conversion of a 4H-pyrane ring into a 1H-pyridine fragment enables aggregation-induced emission enhancement (AIEE) behavior in the target products and slightly increases thermal stability, glass transition temperatures, and ASE efficiency with PLQY up to 15% and ASE thresholds as low as 46 µJ/cm2 in neat spin-cast films, although thermal and photophysical properties are mostly dominated by the incorporated electron acceptors. Continued lasing parameter efficiency parameter improvement experiments revealed that no further optimization of HAPPY dyes by doping in polymer matrixes is required as the amplified spontaneous emission thresholds were lowest in pure neat films due to the AIEE phenomenon.

3.
RSC Adv ; 10(46): 27552-27559, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-35516930

ABSTRACT

Iridium(iii) complexes are the most frequently applied commercialized green and red emitters for organic light emitting diode (OLED) displays. Throughout years a significant research effort has been devoted to modify these compounds, in order to make them suitable for cost-effective solution-processing techniques, such as inkjet printing. To achieve this, the inherent tendency of the complex molecules to form poorly emissive aggregates needs to be suppressed. In many cases this has been achieved by an encapsulation of the iridium(iii) complex core with dendritic structures, composed of either passive or charge-transporting fragments. In order to validate this approach, we acquired three structural analogues of the conventional green emitter Ir(ppy)3, which possess gradually increasing sterical encumberment at the complex surface. Corresponding OLEDs were examined, with three distinctively different active emissive layer compositions in terms of charge transportation characteristics. The results show that in the all scenarios the unmodified Ir(ppy)3 outperforms the compounds with attached bulky groups. The in-device performance of the emitter is directly related to its charge trapping ability, which is being compromised in the presence of dendritic auxiliary substituents.

4.
Inorg Chem ; 58(7): 4214-4222, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30869883

ABSTRACT

Phosphorescent iridium(III) complexes suffer from a strong aggregation quenching, limiting their use in solution-processed or crystalline organic light-emitting diodes. Here we report how an intramolecular stacking between a flexibly bridged bulky aromatic pendant group and the core of nonionic heteroleptic complex can be exploited to minimize the negative effects of this drawback. The stacked conformation provides a rigid sterical shielding of the polar molecular surface, improving photoluminescence quantum yield of the complex both in solution and crystalline state.

SELECTION OF CITATIONS
SEARCH DETAIL
...