Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 10(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669457

ABSTRACT

Methylene blue (MB) is used in human therapy in various pathological conditions. Its effects in neurodegenerative disease models are promising. MB acts on multiple cellular targets and mechanisms, but many of its potential beneficial effects are ascribed to be mitochondrial. According to the "alternative electron transport" hypothesis, MB is capable of donating electrons to cytochrome c bypassing complex I and III. As a consequence of this, the deleterious effects of the inhibitors of complex I and III can be ameliorated by MB. Recently, the beneficial effects of MB exerted on complex III-inhibited mitochondria were debated. In the present contribution, several pieces of evidence are provided towards that MB is able to reduce cytochrome c and improve bioenergetic parameters, like respiration and membrane potential, in mitochondria treated with complex III inhibitors, either antimycin or myxothiazol. These conclusions were drawn from measurements for mitochondrial oxygen consumption, membrane potential, NAD(P)H steady state, MB uptake and MB-cytochrome c oxidoreduction. In the presence of MB and complex III inhibitors, unusual respiratory reactions, like decreased oxygen consumption as a response to ADP addition as well as stimulation of respiration upon administration of inhibitors of ATP synthase or ANT, were observed. Qualitatively identical results were obtained in three rodent species. The actual metabolic status of mitochondria is well reflected in the distribution of MB amongst various compartments of this organelle.

2.
Bioorg Med Chem Lett ; 26(2): 424-428, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26704265

ABSTRACT

Activation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in ß-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different pathways in obesity. A series of novel pyrido[2,3-d]pyrimidin-7-one derivatives were synthesized as potential antidiabetic agents, preventing IRS-1 phosphorylation at serine 307 in a cellular model of lipotoxicity and type 2 diabetes.


Subject(s)
Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Phosphorylation/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Serine/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , HEK293 Cells , Humans , JNK Mitogen-Activated Protein Kinases/metabolism
4.
PLoS One ; 10(4): e0124234, 2015.
Article in English | MEDLINE | ID: mdl-25874616

ABSTRACT

Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-α -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways.


Subject(s)
Protein Kinase C/metabolism , Protein Kinase Inhibitors/toxicity , Pyridones/toxicity , Pyrimidines/toxicity , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Neovascularization, Pathologic , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Pyridones/chemistry , Pyrimidines/chemistry , Superoxides/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/genetics
5.
PLoS One ; 9(6): e97868, 2014.
Article in English | MEDLINE | ID: mdl-24896641

ABSTRACT

Lipotoxicity refers to cellular dysfunctions caused by elevated free fatty acid levels playing a central role in the development and progression of obesity related diseases. Saturated fatty acids cause insulin resistance and reduce insulin production in the pancreatic islets, thereby generating a vicious cycle, which potentially culminates in type 2 diabetes. The underlying endoplasmic reticulum (ER) stress response can lead to even ß-cell death (lipoapoptosis). Since improvement of ß-cell viability is a promising anti-diabetic strategy, the protective effect of metformin, a known insulin sensitizer was studied in rat insulinoma cells. Assessment of palmitate-induced lipoapoptosis by fluorescent microscopy and by detection of caspase-3 showed a significant decrease in metformin treated cells. Attenuation of ß-cell lipotoxicity was also revealed by lower induction/activation of various ER stress markers, e.g. phosphorylation of eukaryotic initiation factor 2α (eIF2α), c-Jun N-terminal kinase (JNK), insulin receptor substrate-1 (IRS-1) and induction of CCAAT/enhancer binding protein homologous protein (CHOP). Our results indicate that the ß-cell protective activity of metformin in lipotoxicity can be at least partly attributed to suppression of ER stress.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Hypoglycemic Agents/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Insulin-Secreting Cells/drug effects , Metformin/pharmacology , Palmitic Acid/pharmacology , Animals , Caspase 3/metabolism , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism , Insulin-Secreting Cells/metabolism , Insulinoma/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Pancreatic Neoplasms/metabolism , Phosphorylation/drug effects , Rats , Transcription Factor CHOP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...