Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 13: 1201, 2019.
Article in English | MEDLINE | ID: mdl-31798400

ABSTRACT

The massively parallel nature of biological information processing plays an important role due to its superiority in comparison to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.

2.
J Theor Biol ; 359: 92-100, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-24929041

ABSTRACT

Syncytial embryos develop through cycles of nuclear division and rearrangement within a common cytoplasm. A paradigm example is Drosophila melanogaster in which nuclei form an ordered array in the embryo surface over cell cycles 10-13. This ordering process is assumed to be essential for subsequent cellularisation. Using quantitative tissue analysis, it has previously been shown that the regrowth of actin and microtubule networks after nuclear division generates reordering forces that counteract its disordering effect (Kanesaki et al., 2011). We present here an individual-based computer simulation modelling the nuclear dynamics. In contrast to similar modelling approaches e.g. epithelial monolayers or tumour spheroids, we focus not on the spatial dependence, but rather on the time-dependence of the interaction laws. We show that appropriate phenomenological inter-nuclear force laws reproduce the experimentally observed dynamics provided that the cytoskeletal network regrows sufficiently quickly after mitosis. Then repulsive forces provided by the actin system are necessary and sufficient to regain the observed level of order in the system, after the strong disruption resulting from cytoskeletal network disassembly and spindle formation. We also observe little mixing of nuclei through cell cycles. Our study highlights the importance of the dynamics of cytoskeletal forces during this critical phase of syncytial development and emphasises the need for real-time experimental data at high temporal resolution.


Subject(s)
Cell Nucleus/physiology , Computer Simulation , Embryo, Nonmammalian , Giant Cells/ultrastructure , Animals , Cell Cycle/physiology , Cell Nucleus Division/physiology , Computational Biology , Drosophila melanogaster/embryology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/ultrastructure , Giant Cells/physiology , Mitosis/physiology , Spindle Apparatus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...