Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 3283, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094502

ABSTRACT

Icings are sheet-like masses of ice that form on the ground surface or in fluvial channels from groundwater seepage. Although the presence of icings in the landscape is known, few studies investigated their regional distribution and explored relations with terrain factors including permafrost and winter baseflow conditions. Here, we mapped the distribution of icings in a 618,430 km2 area of northwestern Canada from a stack of 573 Landsat imageries (1985-2017) and determined using hydrometric data the winter baseflow contribution to the total annual discharge of 17 rivers in the study area. The 1402 mapped icings occur preferentially at the foothills of heavily faulted karstic mountainous regions in the continuous permafrost. Winter baseflow and its contribution to annual discharge was lower in continuous permafrost catchments than in discontinuous permafrost but showed a general increase over the 1970-2016 period. As such, the distribution of icings appears to be sensitive to winter air temperatures and winter baseflow conditions and icings located at the southern boundary of continuous permafrost would be more sensitive to degrading permafrost and the predicted increase in winter baseflow.

2.
Ecol Appl ; 25(1): 172-85, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26255366

ABSTRACT

Arctic ecosystems are vulnerable to the combined effects of climate change and a range of other anthropogenic perturbations. Predicting the cumulative impact of these stressors requires an improved understanding of the factors affecting ecological resilience. In September of 1999, a severe storm surge in the Mackenzie Delta flooded alluvial surfaces up to 30 km inland from the coast with saline waters, driving environmental impacts unprecedented in the last millennium. In this study we combined field monitoring of permanent sampling plots with an analysis of the Landsat archive (1986-2011) to explore the factors affecting the recovery of ecosystems to this disturbance. Soil salinization following the 1999 storm caused the abrupt dieback of more than 30,000 ha of tundra vegetation. Vegetation cover and soil chemistry show that recovery is occurring, but the rate and spatial extent are strongly dependent on vegetation type, with graminoid- and upright shrub-dominated areas showing recovery after a decade, but dwarf shrub tundra exhibiting little to no recovery over this period. Our analyses suggest that recovery from salinization has been strongly influenced by vegetation type and the frequency of freshwater flooding following the storm. With increased ocean storm activity, rising sea levels, and reduced sea ice cover, Arctic coastal ecosystems will be more likely to experience similar disturbances in the future, highlighting the importance of combining field sampling with regional-scale remote sensing in efforts to detect, understand, and anticipate environmental change.


Subject(s)
Climate Change , Rivers , Seawater/chemistry , Arctic Regions , Environment , Environmental Monitoring , Plants/classification , Soil/chemistry , Spacecraft , Time Factors , Water Movements
3.
Environ Sci Technol ; 46(16): 8748-55, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22839429

ABSTRACT

We examined dated sediment cores from 14 thermokarst affected lakes in the Mackenzie Delta uplands, NT, Arctic Canada, using a case-control analysis to determine how retrogressive thaw slump development from degrading permafrost affected the delivery of mercury (Hg) and organic carbon (OC) to lakes. We show that sediments from the lakes with retrogressive thaw slump development on their shorelines (slump-affected lakes) had higher sedimentation rates and lower total Hg (THg), methyl mercury (MeHg), and lower organic carbon concentrations compared to lakes where thaw slumps were absent (reference lakes). There was no difference in focus-corrected Hg flux to sediments between reference lakes and slump-affected lakes, indicating that the lower sediment Hg concentration in slump-affected lakes was due to dilution by rapid inorganic sedimentation in the slump-affected lakes. Sedimentation rates were inversely correlated with THg concentrations in sediments among the 14 lakes considered, and explained 68% of the variance in THg concentration in surface sediment, further supporting the dilution hypothesis. We observed higher S2 (algal-derived carbon) and particulate organic carbon (POC) concentrations in sediment profiles from reference lakes than in slump lakes, likely because of dilution by inorganic siliciclastic matter in cores from slump-affected lakes. We conclude that retrogressive thaw slump development increases inorganic sedimentation in lakes, and decreases concentrations of organic carbon and associated Hg and MeHg in sediments.


Subject(s)
Lakes , Mercury/analysis , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Northwest Territories
SELECTION OF CITATIONS
SEARCH DETAIL
...