Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 56(4): 899-907, 1996 Feb 15.
Article in English | MEDLINE | ID: mdl-8631031

ABSTRACT

A new human breast cancer cell line (SUM-52PE), originating from a malignant pleural effusion specimen, that can be cultured under serum-free conditions has been isolated. Experiments were conducted to examine the relationship between expression of the erbB family of growth factor receptors and growth regulation in these cells. SUM-52PE cells are epidermal growth factor receptor negative but express single copy levels of erbB-2 protein. Southern blot analysis indicates that the erbB-2 gene is not amplified in these cells. The cells also express mRNA for both erbB-3 and erbB-4. Phosphotyrosine Western blot analysis of membrane protein obtained from SUM-52PE cells indicates the presence of a constitutively tyrosine phosphorylated M(r) 185,000 protein. Immunoprecipitation, using antibodies to erbB-2 or erbB-3, coupled to phosphotyrosine Western blot analysis indicates that both erbB-2 and erbB-3 are constitutively tyrosine phosphorylated in proliferating SUM-52PE cells. Conditioned medium obtained from SUM-52PE cells does not induce tyrosine phosphorylation of p185erbB-2 in a sensitive indicator cell line, suggesting that an erbB-2 activating factor is not secreted by these cells. However, neu differentiation factor/heregulin (NDF/HRG) mRNA is expressed by the cells, and Western blot analysis of SUM-52PE membrane protein revealed the presence of a M(r) 90,000 immunoreactive NDF/HRG protein. Thus, SUM-52PE cells synthesize a membrane bound form of NDF/HRG that may activate erbB-2 and erbB-3 via a juxtacrine mechanism. The addition of exogenous beta-2-NDF/HRG to the culture medium of SUM-52PE cells yields enhanced tyrosine phosphorylation of p185erbB-2/erbB-3 but has only a small stimulatory effect on the proliferation of these cells. By contrast, an erbB-2 monoclonal antibody that binds to the extracellular domain of erbB-2 is potently mitogenic for these cells. SUM-52PE cells were also found, by phosphotyrosine Western blot analysis, to express an inordinately large number of tyrosine phosphoproteins. Direct measurement of phosphotyrosine phosphatase (PTPase) activity in SUM-52PE cell membrane protein revealed 2-3-fold lower levels of PTPase activity compared to other normal and neoplastic breast epithelial cell lines. Thus, SUM-52PE cells exhibit altered growth phenotypes not identified previously in human breast cancer cells. The constitutive activation of erbB-2 and erbB-3 in these cells, coupled with their low, membrane-associated, PTPase activity are likely to play direct roles in driving proliferation of these breast cancer cells.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , ErbB Receptors/biosynthesis , Gene Expression , Genes, erbB-2 , Proto-Oncogene Proteins/biosynthesis , Receptor, ErbB-2/biosynthesis , Base Sequence , Blotting, Western , Breast , Cell Division , Cell Line , DNA Primers , Female , Humans , Kinetics , Molecular Sequence Data , Phosphoproteins/biosynthesis , Phosphoproteins/isolation & purification , Phosphotyrosine/analysis , Pleural Effusion/pathology , Polymerase Chain Reaction , Protein Tyrosine Phosphatases/metabolism , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Receptor, ErbB-3 , Tumor Cells, Cultured , Vanadates/pharmacology
2.
J Cell Physiol ; 163(3): 589-96, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7775601

ABSTRACT

Recently, a family of growth factors has been described that activates erbB-2 receptors. These factors, known as the neu differentiation factors (NDF) or heregulins (HRG), induce tyrosine phosphorylation of erbB-2 receptors as a result of their direct interaction with either erbB-3 or erbB-4 receptors. Although it is known that expression of erbB-2 receptors has relevance in human breast cancer progression, how erbB-2, -3 and -4 receptors regulate mammary epithelial cell proliferation is not known. Therefore, experiments were carried out to study the mitogenic activity of NDF/HRG on the human mammary epithelial cell line MCF-10A which can be cultured continuously under serum-free conditions. MCF-10A cells, like primary cultures of normal human mammary epithelial cells, express an absolute requirement for exogenous epidermal growth factor (EGF) and insulinlike growth factor I (IGF-I) for growth. The results of these experiments indicate that NDF/HRG can induce tyrosine phosphorylation of p185erbB-2 in MCF-10A cells and is mitogenic for these cells. This is consistent with the coexpression of erbB-2 and erbB-3 mRNA that we have observed in MCF-10A cells. In addition, we found that NDF/HRG can substitute for either EGF or IGF-I to stimulate proliferation of these cells. The ability to substitute for both EGF and IGF-I is a unique property of NDF/HRG and is not shared by other members of the EGF or IGF family of growth factors, nor by other factors that we have studied. A striking isoform specificity was also observed which indicated that the beta-isoforms of NDF/HRG were greater than ten times more mitogenic than the alpha-isoforms. We also examined the mitogenic activity of NDF/HRG on MCF-10A cells that overexpress the erbB-2 receptor as a result of infection with a retroviral vector containing the human c-erbB-2 gene (MCF-10AerbB-2 cells). These studies indicated that MCF-10AerbB-2 cells have increased sensitivity to the mitogenic effects of NDF/HRG and that these cells are responsive to the alpha-isoforms of NDF/HRG at physiological concentrations. Thus, NDF/HRG is a dual specificity growth factor for human mammary epithelial cells, and the responsiveness of the cells to NDF/HRG is influenced by the level of expression of erbB-2 receptors.


Subject(s)
Breast/drug effects , Epidermal Growth Factor/pharmacology , Glycoproteins/pharmacology , Insulin-Like Growth Factor I/pharmacology , Mitogens/pharmacology , Base Sequence , Breast/cytology , Cell Line , Epithelial Cells , Epithelium/drug effects , Humans , Molecular Probes/genetics , Molecular Sequence Data , Neuregulins , Receptor, ErbB-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...