Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(1): e23738, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226277

ABSTRACT

Adverse environmental stress causes depressive symptoms with the impairments of memory formation, cognition, and motivation, however, their underlying neural bases have not been well understood, especially based on the observation of living animals. In the present study, therefore, the mice model of restraint-induced stress was examined electrophysiologically to investigate the alterations of hippocampal sharp wave ripples (SWRs) and theta rhythms. In addition, the therapeutic effects of physical exercise on the amelioration of those hippocampal impairments were examined in combination with a series of behavioral tests. The data demonstrated that chronic restraint stress caused the reductions of occurrence and amplitude of hippocampal SWRs and the decreases of occurrence, duration, and power of theta rhythms, while physical exercise significantly reverted them to the levels of healthy control. Furthermore, hippocampal adult neurogenesis and microglial activation, previously reported to be involved in the etiology of depression, were histologically examined in the mice. The results showed that the impairment of neurogenesis and alleviation of microglial activation were induced in the depressed mice. On the other hand, physical exercise considerably ameliorated those pathological conditions in the affected brain. Consistently, the data of behavioral tests in mice suggested that physical exercise ameliorated the symptomatic defects of motivation, memory formation, and cognition in the depressed mice. The impairments of hippocampal SWRs and theta rhythms in the affected hippocampus are linked with the symptomatic impairments of cognition and motivation, and the defect of memory formation, respectively, in depression. Taken together, this study demonstrated the implications of impairment of the hippocampal SWRs and theta rhythms in the etiology of depression and their usefulness as diagnostic markers of depression.

3.
Sci Rep ; 11(1): 8150, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854148

ABSTRACT

Cortical spreading depolarization (CSD) is a propagating wave of tissue depolarization characterized by a large increase of extracellular potassium concentration and prolonged subsequent electrical silencing of neurons. Waves of CSD arise spontaneously in various acute neurological settings, including migraine aura and ischemic stroke. Recently, we have reported that pan-inhibition of adrenergic receptors (AdRs) facilitates the normalization of extracellular potassium after acute photothrombotic stroke in mice. Here, we have extended that mechanistic study to ask whether AdR antagonists also modify the dynamics of KCl-induced CSD and post-CSD recovery in vivo. Spontaneous neural activity and KCl-induced CSD were visualized by cortex-wide transcranial Ca2+ imaging in G-CaMP7 transgenic mice. AdR antagonism decreased the recurrence of CSD waves and accelerated the post-CSD recovery of neural activity. Two-photon imaging revealed that astrocytes exhibited aberrant Ca2+ signaling after passage of the CSD wave. This astrocytic Ca2+ activity was diminished by the AdR antagonists. Furthermore, AdR pan-antagonism facilitated the normalization of the extracellular potassium level after CSD, which paralleled the recovery of neural activity. These observations add support to the proposal that neuroprotective effects of AdR pan-antagonism arise from accelerated normalization of extracellular K+ levels in the setting of acute brain injury.


Subject(s)
Adrenergic Antagonists/administration & dosage , Cortical Spreading Depression/drug effects , Potassium Chloride/adverse effects , Thrombotic Stroke/drug therapy , Adrenergic Antagonists/pharmacology , Animals , Calcium/metabolism , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Potassium Chloride/pharmacology , Recovery of Function , Thrombotic Stroke/etiology , Thrombotic Stroke/metabolism , Thrombotic Stroke/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...