Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1085787, 2023.
Article in English | MEDLINE | ID: mdl-36865783

ABSTRACT

Halophytic plants can tolerate a high level of salinity through several morphological and physiological adaptations along with the presence of salt tolerant rhizo-microbiome. These microbes release phytohormones which aid in alleviating salinity stress and improve nutrient availability. The isolation and identification of such halophilic PGPRs can be useful in developing bio-inoculants for improving the salt tolerance and productivity of non-halophytic plants under saline conditions. In this study, salt-tolerant bacteria with multiple plant growth promoting characteristics were isolated from the rhizosphere of a predominant halophyte, Sesuvium portulacastrum grown in the coastal and paper mill effluent irrigated soils. Among the isolates, nine halotolerant rhizobacterial strains that were able to grow profusely at a salinity level of 5% NaCl were screened. These isolates were found to have multiple plant growth promoting (PGP) traits, especially 1-aminocyclopropane-1-carboxylic acid deaminase activity (0.32-1.18 µM of α-ketobutyrate released mg-1 of protein h-1) and indole acetic acid (9.4-22.8 µg mL-1). The halotolerant PGPR inoculation had the potential to improve salt tolerance in Vigna mungo L. which was reflected in significantly (p < 0.05) higher germination percentage (89%) compared to un-inoculated seeds (65%) under 2% NaCl. Similarly, shoot length (8.9-14.6 cm) and vigor index (792-1785) were also higher in inoculated seeds. The strains compatible with each other were used for the preparation of two bioformulations and these microbial consortia were tested for their efficacy in salt stress alleviation of Vigna mungo L. under pot study. The inoculation improved the photosynthetic rate (12%), chlorophyll content (22%), shoot length (5.7%) and grain yield (33%) in Vigna mungo L. The enzymatic activity of catalase and superoxide dismutase were found to be lower (7.0 and 1.5%, respectively) in inoculated plants. These results revealed that halotolerant PGPR isolated from S. portulacastrum can be a cost-effective and ecologically sustainable method to improve crop productivity under high saline conditions.

2.
Microb Pathog ; 173(Pt A): 105820, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36270440

ABSTRACT

In this study, we present the molecular and insecticidal characteristics of an indigenous Bt isolate T405 toxic against the maize fall armyworm (FAW), Spodoptera frugiperda. The presence of cry1, cry2 (cry2Aa & cry2Ab) and vip3A1 genes in T405 was confirmed. The SDS-PAGE gel analysis confirmed the occurrence of Cry and Vip proteins with molecular masses of 130, ∼88 and 65 kDa in T405. LC50 estimates of T405 and HD1 were 161.37 and 910.73 µg ml-1 for neonates whereas, 412.29 and 1014.95 µg ml-1 correspondingly for 2nd instar FAW larvae. Scanning Electron Microscopy depicted the existence of bipyramidal, spherical and cubic crystals in T405 spore suspension. The whole genome sequencing and assembly of T405 produced a total of 563 scaffolds with a genome size of 6,673,691 bp. The BLAST similarity search showed that 12 plasmids were distributed in this genome. Genome annotation revealed the presence of 6174 protein coding genes, 13 rRNA and 98 tRNA, in which 6126 genes were completely annotated for their functions through sequence similarity search, domains/motifs identification and gene ontology studies. Further analysis of these genes identified the presence of many insecticidal toxin protein coding genes viz., cry1Ac32, cry1Ab9, cry1Aa6, cry1Ac5, cry1Aa18, cry1Ab8, cry1Ab11, cry2Aa9, cry1Ia40, cry2Aa9, cry1Ia40, cry2Ab35, cyt, vip3Aa7 and tpp80Aa and several additional virulence assisted factors viz., immune inhibitor A, phospholipase C, sphingomyelinase, cell wall hydrolases, chitinase, hemolysin XhlA and seven urease subunit coding genes (ureA, ureB, ureC, ureD, ureE, ureF, ureG) in the annotated genome.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Larva/genetics , Larva/metabolism , Pest Control, Biological , Spodoptera/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...