Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 45(4): 973-981, 2017 04.
Article in English | MEDLINE | ID: mdl-27826673

ABSTRACT

Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P < 0.05 for iodine and Gd-DTPA; and 76% increase after 10 min for diatrizoate, P < 0.05). Effective partition coefficients were unaffected in mechanically injured cartilage. Mechanical injury reduced PG content and collagen integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.


Subject(s)
Cartilage, Articular , Chondrocytes/metabolism , Contrast Media , Extracellular Matrix/metabolism , Gadolinium , Iodine , Animals , Biological Transport, Active , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Cattle , Chondrocytes/pathology , Contrast Media/pharmacokinetics , Contrast Media/pharmacology , Extracellular Matrix/pathology , Gadolinium/pharmacokinetics , Gadolinium/pharmacology , Iodine/pharmacokinetics , Iodine/pharmacology
2.
Osteoarthritis Cartilage ; 24(9): 1656-64, 2016 09.
Article in English | MEDLINE | ID: mdl-27143363

ABSTRACT

OBJECTIVE: To investigate the sensitivity of quantitative magnetic resonance imaging (MRI) parameters to increase of collagen cross-linking in articular cartilage, a factor possibly contributing to the aging-related development of osteoarthritis (OA). The issue has not been widely studied although collagen cross-links may significantly affect the evaluation of cartilage imaging outcome. DESIGN: Osteochondral samples (n = 14) were prepared from seven bovine patellae. To induce cross-linking, seven samples were incubated in threose while the other seven served as non-treated controls. The specimens were scanned at 9.4 T for T1, T1Gd (dGEMRIC), T2, adiabatic and continuous wave (CW) T1ρ, adiabatic T2ρ and T1sat relaxation times. Specimens from adjacent tissue were identically treated and used for reference to determine biomechanical properties, collagen, proteoglycan and cross-link contents, fixed charge density (FCD), collagen fibril anisotropy and water concentration of cartilage. RESULTS: In the threose-treated sample group, cross-links (pentosidine, lysyl pyridinoline (LP)), FCD and equilibrium modulus were significantly (P < 0.05) higher as compared to the non-treated group. Threose treatment resulted in significantly greater T1Gd relaxation time constant (+26%, P < 0.05), although proteoglycan content was not altered. Adiabatic and CW-T1ρ were also significantly increased (+16%, +28%, P < 0.05) while pre-contrast T1 was significantly decreased (-10%, P < 0.05) in the threose group. T2, T2ρ and T1sat did not change significantly. CONCLUSION: Threose treatment induced collagen cross-linking and changes in the properties of articular cartilage, which were detected by T1, T1Gd and T1ρ relaxation time constants. Cross-linking should be considered especially when interpreting the outcome of contrast-enhanced MRI in aging populations.


Subject(s)
Cartilage, Articular , Animals , Cattle , Collagen , Magnetic Resonance Imaging , Osteoarthritis , Patella
3.
Med Eng Phys ; 35(10): 1415-20, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23622944

ABSTRACT

OBJECTIVE: To investigate the effect of threose-induced collagen cross-linking on diffusion of ionic and non-ionic contrast agents in articular cartilage. DESIGN: Osteochondral plugs (Ø=6mm) were prepared from bovine patellae and divided into two groups according to the contrast agent to be used in contrast enhanced computed tomography (CECT) imaging: (I) anionic ioxaglate and (II) non-ionic iodixanol. The groups I and II contained 7 and 6 sample pairs, respectively. One of the paired samples served as a reference while the other was treated with threose to induce collagen cross-linking. The equilibrium partitioning of the contrast agents was imaged after 24h of immersion. Fixed charge density (FCD), water content, contents of proteoglycans, total collagen, hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP) and pentosidine (Pent) cross-links were determined as a reference. RESULTS: The equilibrium partitioning of ioxaglate (group I) was significantly (p=0.018) lower (-23.4%) in threose-treated than control samples while the equilibrium partitioning of iodixanol (group II) was unaffected by the threose-treatment. FCD in the middle and deep zones of the cartilage (p<0.05) and contents of Pent and LP (p=0.001) increased significantly due to the treatment. However, the proteoglycan concentration was not systematically altered after the treatment. Water content was significantly (-3.5%, p=0.007) lower after the treatment. CONCLUSIONS: Since non-ionic iodixanol showed no changes in partition after cross-linking, in contrast to anionic ioxaglate, we conclude that the cross-linking induced changes in charge distribution have greater effect on diffusion compared to the cross-linking induced changes in steric hindrance.


Subject(s)
Cartilage, Articular/metabolism , Contrast Media/chemistry , Contrast Media/metabolism , Diffusion , Static Electricity , Animals , Cartilage, Articular/chemistry , Cartilage, Articular/diagnostic imaging , Cattle , Collagen/chemistry , Collagen/metabolism , Tomography, X-Ray Computed
4.
Osteoarthritis Cartilage ; 19(10): 1190-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21827864

ABSTRACT

OBJECTIVE: The effect of threose-induced collagen cross-linking on the mechanical and diffusive properties of cartilage was investigated in vitro. In particular, we investigated the potential of Contrast Enhanced Computed Tomography (CECT) to detect changes in articular cartilage after increased collagen cross-linking, which is an age-related phenomenon. METHODS: Osteochondral plugs (Ø=6.0 mm, n=28) were prepared from intact bovine patellae (n=7). Two of the four adjacent samples, prepared from each patella, were treated with threose to increase the collagen cross-linking, while the other two specimen served as paired controls. One sample pair was mechanically tested and then mechanically injured using a material testing device. Contrast agent [ioxaglate (Hexabrix™)] diffusion was imaged in the other specimen pair for 25 h using CECT. Water fraction, collagen and proteoglycan content, collagen network architecture and the amount of cross-links [hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP) and pentosidine (Pent)] of the samples were also determined. RESULTS: Cartilage collagen cross-linking, both Pent and LP, were significantly (P<0.001) increased due to threose treatment. CECT could detect the increased cross-links as the contrast agent penetration and the diffusion flux were significantly (P<0.05) lower in the threose treated than in untreated samples. The equilibrium modulus (+164%, P<0.05) and strain dependent dynamic modulus (+47%, P<0.05) were both significantly greater in the threose treated samples than in reference samples, but there was no association between the initial dynamic modulus and the threose treatment. The water fraction, proteoglycan and collagen contents, as well as collagen architecture, were not significantly altered by the threose treatment. CONCLUSIONS: To conclude, the CECT technique was found to be sensitive at detecting changes in cartilage tissue due to increased collagen cross-linking. This is important since increased cross-linking has been proposed to be related to the increased injury susceptibility of tissue.


Subject(s)
Aging/physiology , Cartilage, Articular/diagnostic imaging , Collagen/chemistry , Patella/diagnostic imaging , Amino Acids/analysis , Animals , Arginine/analogs & derivatives , Arginine/analysis , Cartilage, Articular/chemistry , Case-Control Studies , Cattle , Collagen/analysis , Contrast Media , Hindlimb/chemistry , Hindlimb/diagnostic imaging , Ioxaglic Acid , Lysine/analogs & derivatives , Lysine/analysis , Patella/chemistry , Tetroses , Tomography, X-Ray Computed/methods
5.
Osteoarthritis Cartilage ; 19(3): 295-301, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21215317

ABSTRACT

OBJECTIVE: Osteoarthritic degeneration may be initiated by mechanical overloading of articular cartilage. Mechanical injury increases the permeability of tissue, thereby probably affecting the diffusion of contrast agents in articular cartilage. We investigated whether it is possible to detect acute cartilage injury by measuring contrast agent diffusion into articular cartilage using contrast enhanced computed tomography (CECT). METHODS: Osteochondral plugs (Ø=6.0 mm, n=36) were prepared from intact bovine patellae (n=9). Two of the adjacent samples were injured by impact loading, using a drop tower, while the others served as paired controls. The samples were imaged before immersion in contrast agent solution [ioxaglate (Hexabrix™) or sodium iodide (NaI)] and 1, 3, 5, 7, 10, 15, 20 and 25 h after immersion using a MicroCT-instrument. Contrast agent content, diffusion coefficient and diffusion flux were determined for each sample. RESULTS: Already after 1 h the penetration of contrast agents into cartilage was significantly (P<0.05) greater in the injured samples. The diffusion coefficient was not altered by the injury, which suggests that reaching the diffusion equilibrium takes the same time in injured and intact cartilage. However, the diffusion flux of ioxaglate through the articular surface was significantly higher in injured samples at 30-60 min after immersion. CONCLUSIONS: To conclude, CECT could diagnose articular cartilage injuries, and determination of the diffusion flux of ioxaglate helped to detect tissue injury without waiting for the diffusion equilibrium. These results are encouraging, however, in vivo application of CECT is challenging and systematic further studies are needed to reveal its clinical potential.


Subject(s)
Cartilage, Articular/diagnostic imaging , Cartilage, Articular/injuries , Contrast Media , Tomography, X-Ray Computed/methods , Animals , Cartilage, Articular/metabolism , Cattle , Contrast Media/metabolism , Diffusion , Proteoglycans/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...