Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(1): 27-45, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37964463

ABSTRACT

The intestinal barrier is critical for maintaining intestinal homeostasis, and its dysfunction is associated with various diseases. Recent findings have revealed the multifunctional role of intestinal alkaline phosphatase (IAP) in diverse biological processes, including gut health maintenance and function. This review summarizes the protective effects of IAP on intestinal barrier integrity, encompassing the physical, chemical, microbial, and immune barriers. We discuss the results and insights from in vitro, animal model, and clinical studies as well as the available evidence regarding the impact of diet on IAP activity and expression. IAP can also be used as an indicator to assess intestinal-barrier-related diseases. Further research into the mechanisms of action and long-term health effects of IAP in maintaining overall intestinal health is essential for its future use as a dietary supplement or functional component in medical foods.


Subject(s)
Alkaline Phosphatase , Intestinal Mucosa , Animals , Intestinal Mucosa/metabolism , Alkaline Phosphatase/metabolism , Diet , Dietary Supplements
2.
Crit Rev Food Sci Nutr ; 63(15): 2521-2543, 2023.
Article in English | MEDLINE | ID: mdl-34515594

ABSTRACT

Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Oils, Volatile/chemistry , Cinnamomum zeylanicum/chemistry , Acrolein/chemistry
3.
Front Immunol ; 13: 927272, 2022.
Article in English | MEDLINE | ID: mdl-35958560

ABSTRACT

In this study, we investigated the effects of intestinal alkaline phosphatase (IAP) in controlled intestinal inflammation and alleviated associated insulin resistance (IR). We also explored the possible underlying molecular mechanisms, showed the preventive effect of IAP on IR in vivo, and verified the dephosphorylation of IAP for the inhibition of intestinal inflammation in vitro. Furthermore, we examined the preventive role of IAP in IR induced by a high-fat diet in mice. We found that an IAP + IAP enhancer significantly ameliorated blood glucose, insulin, low-density lipoprotein, gut barrier function, inflammatory markers, and lipopolysaccharide (LPS) in serum. IAP could dephosphorylate LPS and nucleoside triphosphate in a pH-dependent manner in vitro. Firstly, LPS is inactivated by IAP and IAP reduces LPS-induced inflammation. Secondly, adenosine, a dephosphorylated product of adenosine triphosphate, elicited anti-inflammatory effects by binding to the A2A receptor, which inhibits NF-κB, TNF, and PI3K-Akt signalling pathways. Hence, IAP can be used as a natural anti-inflammatory agent to reduce intestinal inflammation-induced IR.


Subject(s)
Alkaline Phosphatase , Insulin Resistance , Alkaline Phosphatase/metabolism , Animals , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mice , Phosphatidylinositol 3-Kinases
4.
Food Res Int ; 137: 109638, 2020 11.
Article in English | MEDLINE | ID: mdl-33233217

ABSTRACT

Recently, the term healthy lifestyle connected to low-calorie diets, although it is not possible to get rid of added sugars as a source of energy, despite the close relation of added sugars to some diseases such as obesity, diabetes, etc. As a result, the sweetener market has flourished, which has led to increased demand for natural sweeteners such as polyols, including d-mannitol. Various methods have been developed to produce d-mannitol to achieve high productivity and low cost. In particular, metabolic engineering for d-mannitol considers one of the most promising approaches for d-mannitol production on the industrial scale. To date, the chemical process is not ideal for large-scale production because of its multistep mechanism involving hydrogenation and high cost. In this review, we highlight and present a comparative evaluation of the biochemical parameters that affecting d-mannitol synthesis from Thermotoga neapolitana and Thermotoga maritima mannitol dehydrogenase (MtDH) as a potential contribution for d-mannitol bio-synthesis. These species were selected because purified mannitol dehydrogenases from both strains have been reported to produce d-mannitol with no sorbitol formation under temperatures (90-120 °C).


Subject(s)
Archaea , Mannitol Dehydrogenases , Archaea/metabolism , Carbohydrate Metabolism , Mannitol , Mannitol Dehydrogenases/genetics , Mannitol Dehydrogenases/metabolism , Sweetening Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...