Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 19(2): 156-164, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27991706

ABSTRACT

The study concerns the mechanics and water relationships of clumps of a species of endohydric moss, Polytrichastrum formosum. Anatomical and morphological studies were done using optical and scanning electron microscopy. Experiments on waterdrop capture and their distribution to adjacent shoots within a moss clump were performed with the experimental set-up for the droplet collision phenomena and ultra-high speed camera. The mechanical strength of the moss clump was tested on an electromechanical testing machine. During the process of moss clump wetting, the falling water drops were captured by the apical stem part or leaves, then flowed down while adhering to the gametophore and never lost their surface continuity. In places of contact with another leaf, the water drop stops there and joins the leaves, enabling their hydration. Mathematical analysis of anatomical images showed that moss stems have different zones with varying cell lumen and cell wall/cell radius ratios, suggesting the occurrence of a periodic component structure. Our study provides evidence that the reaction of mosses to mechanical forces depends on the size of the clump, and that small groups are clearly stronger than larger groups. The clump structure of mosses acts as a net for falling rain droplets. Clumps of Polytrichastrum having overlapping leaves, at the time of loading formed a structure similar to a lattice. The observed reaction of mosses to mechanical forces indicates that this phenomenon appears to be analogous to the 'size effect on structural strength' that is of great importance for various fields of engineering.


Subject(s)
Bryophyta/physiology , Water/physiology , Biomechanical Phenomena , Bryophyta/anatomy & histology , Ecology , Models, Theoretical , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Stems/anatomy & histology , Plant Stems/physiology
2.
J Chem Phys ; 145(19): 194701, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27875880

ABSTRACT

We present measurements of the net electrical surface charge of silicon dioxide (SiO2) in contact with solvents of dielectric constants between 5 and 80. Our experimental approach relies on observing the thermal motion of single silica particles confined in an electrostatic fluidic trap created by SiO2 surfaces. We compare the experimentally measured functional form of the trapping potential with that from free energy calculations and thereby determine the net surface charge in the system. Our findings clearly demonstrate that contrary to popular perception, even in the absence of surfactants, the net electrical charge of ionizable surfaces in contact with apolar solvents can be large enough to lead to significant repulsive forces. A charge regulation model for SiO2 surfaces with a single tunable parameter explains our measurements. This model may find general applicability in estimating the net charge of ionizable surfaces, given system parameters such as the dissociation or association constants of the ionizable groups and the pH, ionic strength, and dielectric constant of the solvent phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...