Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 40(5): e14-e25, 2024 May.
Article in English | MEDLINE | ID: mdl-38431482

ABSTRACT

OBJECTIVES: The biological responses of MTA and Biodentine™ has been assessed on a three-dimensional, tissue-engineered organotypic deciduous pulp analogue. METHODS: Human endothelial (HUVEC) and dental mesenchymal stem cells (SHED) at a ratio of 3:1, were incorporated into a collagen I/fibrin hydrogel; succeeding Biodentine™ and MTA cylindrical specimens were placed in direct contact with the pulp analogue 48 h later. Cell viability/proliferation and morphology were evaluated through live/dead staining, MTT assay and Scanning Electron Microscopy (SEM), and expression of angiogenic, odontogenic markers through real time PCR. RESULTS: Viable cells dominated at day 3 after treatment presenting typical morphology, firmly attached within the hydrogel structures, as shown by live/dead staining and SEM images. MTT assay at day 1 presented a significant increase of cell proliferation in Biodentine™ group. Real-time PCR showed significant upregulation of odontogenic markers DSPP, BMP-2 (day 3,6), RUNX2, ALP (day 3) in contact with Biodentine™ compared to MTA and the control, whereas MTA promoted significant upregulation of DSPP, BMP-2, RUNX2, Osterix (day 3) and ALP (day 6) compared to the control. MSX1 presented downregulation in both experimental groups. Expression of angiogenic markers VEGFa and ANGPT-1 at day 3 was significantly upregulated in contact with Biodentine™ and MTA respectively, while the receptors VEGFR1, VEGFR2 and Tie-2, as well as PECAM-1 were downregulated. SIGNIFICANCE: Both calcium silicate-based materials are biocompatible and exert positive angiogenic and odontogenic effects, although Biodentine™ during the first days of culture, seems to induce higher cell proliferation and provoke a more profound odontogenic and angiogenic response from SHED.


Subject(s)
Calcium Compounds , Cell Proliferation , Dental Pulp , Drug Combinations , Silicates , Tissue Engineering , Silicates/pharmacology , Silicates/chemistry , Calcium Compounds/pharmacology , Calcium Compounds/chemistry , Humans , Tissue Engineering/methods , Cell Proliferation/drug effects , Dental Pulp/cytology , Dental Pulp/drug effects , Aluminum Compounds/pharmacology , Aluminum Compounds/chemistry , Oxides/pharmacology , Oxides/chemistry , Cell Survival/drug effects , Real-Time Polymerase Chain Reaction , Mesenchymal Stem Cells/drug effects , Microscopy, Electron, Scanning , Tooth, Deciduous/cytology , Dental Cements/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Cells, Cultured
2.
Oper Dent ; 44(4): E167-E179, 2019.
Article in English | MEDLINE | ID: mdl-30849015

ABSTRACT

OBJECTIVE: This study evaluated the shear bond strength (SBS) of pretreated monolithic zirconia surfaces bonded to human dentin following immediate dentin sealing (IDS) using two different self-adhesive resin luting agents. METHODS AND MATERIALS: Sixty intact human third molars were collected, stored, sectioned appropriately, and molded according to ISO 29022:2013, resulting in 120 dentin specimens. Ceramic cylindrical specimens were fabricated using CAD/CAM technology and sintered as recommended (final bonding area A=2.56 mm2). Specimens were randomly assigned to eight groups (15≥n≥14) depending on dentin conditioning method (IDS or delayed dentin sealing [DDS]), zirconia surface pretreatment (airborne particle abrasion [APA] with 50 µm Al2O3 particles at 3 bar for 10 seconds or tribochemical silica coating [TBC] with 30 µm CoJet particles at 2.8 bar for 10 seconds), and adhesive luting agent type (Panavia F2.0 [PAN] or PermaCem Dual Smartmix [PER]). Bonded specimens were water-stored (37°C, 24 hours) and subjected to SBS testing (50-kgF load cell, 1 mm/min). Fracture type was evaluated with stereomicroscopy. Data (MPa) were statistically analyzed using three-way analysis of variance (α=0.05). RESULTS: All factors significantly affected SBS values (p<0.001). Dentin conditioning method presented the greatest effect. Mean SBS values ranged from 12.603 MPa (PER-APA-DDS) to 40.704 MPa (PER-TBC-IDS). Based on the fracture type, adhesive failures at the luting agent-zirconia interface were the least common. CONCLUSION: Bonding strategies for monolithic zirconia restorations could potentially benefit from IDS, regardless of the adhesive luting agent system used.


Subject(s)
Dental Bonding , Dental Stress Analysis , Dentin , Humans , Materials Testing , Resin Cements , Shear Strength , Stress, Mechanical , Surface Properties , Zirconium
3.
J Oral Rehabil ; 28(9): 880-7, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11580828

ABSTRACT

The aim of this study was to investigate the influence of substrate characteristics such as chemical composition and surface morphology of dental ceramics to support cell attachment and proliferation. Thus, body (B) and shoulder (S) porcelain differing on their surface morphology and composition were treated with oxides CaO or CaO and P(2)O(5) and four modified ceramics BCa, BCaP, SCa, SCaP were constructed, respectively. The modified ceramics differ from their controls concerning their surface morphology as evaluated by Scanning Electron Microscope (SEM), and their surface chemical composition (Na, KP and Ca) as evaluated by Energy Dispersing Spectroscopy (EDS). All modified ceramics support better than the control ceramics the cell proliferation over 72 h incubation period. Furthermore, higher rates of cell proliferation was detected in shoulder modified ceramics (SCa and SCaP) than in all other cases.


Subject(s)
Dental Porcelain/chemistry , Animals , Cell Adhesion , Cell Division , Chlorocebus aethiops , Surface Properties , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...