Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm X ; 7: 100243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38585343

ABSTRACT

In recent years, the application of fixed dose combinations of antiretroviral drugs in HIV therapy has been established. Despite numerous therapeutic benefits, this approach poses several challenges for the formulation development especially when poorly soluble drugs are considered. Amorphous solid dispersions (ASD) thereby have gained considerable interest in the pharmaceutical field, however, mainly including binary systems containing only one drug and a polymer. The co-formulation of two amorphous drugs can be accompanied by an immense increase in the complexity of the system as exemplarily reported for ritonavir and lopinavir embedded in a composite polymer matrix of PVPVA. The present study aims to present a new formulation approach to overcome the well-documented interaction during dissolution. Two different polymers, PVPVA and HPMCAS were used to produce ASDs for both drugs individually via hot-melt extrusion. The embedding of lopinavir in the slower dissolving polymer HPMCAS, while using PVPVA for ritonavir was found to significantly improve the overall dissolution performance compared to the individual use of PVPVA as well as to the commercial product Kaletra®. In addition, the use of different grades of HPMCAS demonstrated the possibility to further modify the dissolution profile. For a preliminary biorelevant assessment, the selected formulations were tested in a biphasic dissolution setup.

2.
Int J Pharm ; 631: 122493, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36528189

ABSTRACT

The formulation development of amorphous solid dispersions (ASDs) towards a patient-friendly oral solid dosage form is proving to be still challenging. To increase patient's compliance orodispersible tablets (ODTs) can be seen as promising alternative. Two different ASDs were prepared via hot melt extrusion (HME), using PVPVA as polymer for ritonavir (RTV) and HPMCAS for lopinavir (LPV). The extrudates were milled, sieved, and blended with Hisorad® (HRD) or Ludiflash® (LF), two established co-processed excipients (CPE) prior to tableting. Interestingly, the selected ASD particle size was pointed out to be a key parameter for a fast disintegration and high mechanical strength. In terms of PVPVA based ASDs, larger particle sizes > 500 µm enabled a rapid disintegration even under 30 s for 50 % ASD loaded ODTs, whereas the use of smaller particles went along with significant higher disintegration times. However, the influence of the CPE was immense for PVPVA based ASDs, since it was only possible to prepare well performing ODTs, when Hisorad® was chosen. In contrast for HPMCAS based ASDs the selection of smaller particle sizes 180-500 µm was beneficial for overcoming the poor compressibility of the ASD matrix polymer. ODTs with LPV could be produced using both CPEs even with higher ASD loads up to 75 %, while still showing remarkably fast disintegration.


Subject(s)
Polymers , Ritonavir , Humans , Drug Compounding , Solubility , Excipients , Tablets
3.
Eur J Pharm Biopharm ; 180: 170-180, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36191869

ABSTRACT

In the current study, the concept of multiparticulate drug delivery systems (MDDS) was applied to tablets intended for the amorphisation of supersaturated granular ASDs in situ, i.e. amorphisation within the final dosage form by microwave irradiation. The MDDS concept was hypothesised to ensure geometric and structural stability of the dosage form and to improve the in vitro disintegration and dissolution characteristics. Granules were prepared in two sizes (small and large) containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) at a 50 % w/w drug load as well as sodium dihydrogen phosphate monohydrate as the microwave absorbing excipient. The granules were subsequently embedded in an extra-granular tablet phase composed of either the filler microcrystalline cellulose (MCC) or mannitol (MAN), as well as the disintegrant crospovidone and the lubricant magnesium stearate. The tensile strength and disintegration time were investigated prior to and after 10 min of microwave irradiation (800 and 1000 W) and the formed ASDs were characterised by X-ray powder diffraction and modulated differential scanning calorimetry. Additionally, the internal structure was elucidated by X-ray micro-Computed Tomography (XµCT) and, finally, the dissolution performance of selected tablets was investigated. The MDDS tablets displayed no geometrical changes after microwave irradiation, however, the tensile strength and disintegration time generally increased. Complete amorphisation of CCX was achieved only for the MCC-based tablets at a power input of 1000 W, while MAN-based tablets displayed partial amorphisation independent of power input. The complete amorphisation of CCX was associated with the fusion of individual ASD granules within the tablets, which negatively impacted the subsequent disintegration and dissolution performance. For these tablets, supersaturation was only observed after 60 min. On the other hand, the partially amorphised MDDS tablets displayed complete disintegration during the dissolution experiments, resulting in a fast onset of supersaturation within 5 min and an approx. 3.5-fold degree of supersaturation within the experimental timeframe (3 h). Overall, the MDDS concept was shown to potentially be a feasible dosage form for in situ amorphisation, however, there is still room for improvement to obtain a both fully amorphous and disintegrating system.


Subject(s)
Chemistry, Pharmaceutical , Povidone , Humans , Chemistry, Pharmaceutical/methods , X-Ray Microtomography , Tablets/chemistry , Povidone/chemistry , Excipients/chemistry , Celecoxib/chemistry , Mannitol/chemistry , Drug Delivery Systems , Solubility
4.
Expert Opin Drug Deliv ; 18(12): 1873-1890, 2021 12.
Article in English | MEDLINE | ID: mdl-34822316

ABSTRACT

INTRODUCTION: Child appropriate dosage forms are indispensable in modern medicine and are a prerequisite for successful pediatric drug therapy. For years, experts have called for a paradigm shift, from liquid dosage forms to novel oral solid dosage forms. This review aims to shed light on recent developments in Orodispersible tablets (ODTs) and mini-tablets (ODMTs). AREAS COVERED: This review focuses on the presentation and critical discussion of current challenges as well as recent advances in ODTs for pediatric drug delivery. Highlighted aspects are the evidence for acceptability by children, e.g. in comparison to other dosage forms, and limitations given by tablet size at different ages, as well as advances in special ODT formulations (taste masking, modified release, enabling formulations). EXPERT OPINION: It is the authors' belief that OD(M)Ts have significant potential as dosage forms in pediatric therapy that has not yet been fully exploited. The reasons for this are, first, that the number of direct acceptance studies is extremely low and the resulting knowledge is therefore rather anecdotal. Despite the high relevance, there seems to be reluctance both in the therapeutic use and conduction of respective studies in children. However, if one combines the knowledge from the few existing studies, surveys, and from approved products, it becomes apparent that so far there is no evidence on limitations of the use of ODTs in pediatric patients.


Subject(s)
Drug Delivery Systems , Taste , Administration, Oral , Child , Drug Compounding , Humans , Solubility , Tablets
5.
Eur J Pharm Biopharm ; 168: 122-130, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34474110

ABSTRACT

Pediatric, geriatric, and other patients who suffer from swallowing difficulties represent a special patient group, where an increased need in appropriate formulation development is required. To overcome these mostly swallowability linked issues, orodispersible tablets (ODTs) and orodispersible mini-tablets (ODMTs) can be seen as a suitable alternative to improve compliance. Orodispersible tablets are oral solid dosage forms which rapidly disintegrate after contact with saliva, leaving a liquid dispersion, which can be easily swallowed. To fulfil the required quality criteria and optimize the formulations regarding tensile strength and disintegration time, co-processed excipients (CPE) based on mannitol are frequently used in the manufacturing of orodispersible tablets. This study aimed to systematically compare two new CPEs, namely Granfiller-D® and Hisorad® and evaluate their potential in future OD(M)T formulations with already marketed products. The performance of the CPEs was examined in combination with three different APIs. Disintegration time, sufficient mechanical strength and content uniformity for low dosed formulation were chosen as main quality aspects. Conventionally sized tablets (9 mm) with 50% drug load of ibuprofen and paracetamol were produced with each CPE. Low dosed OD(M)Ts with a drug load of 4% enalapril maleate were manufactured to study content uniformity. Large differences were visible in the formulations containing ibuprofen and only Hisorad® allowed to compress ODT fulfilling the specifications of Ph.Eur. and FDA regarding disintegration times (180 s and 30 s, respectively). For the poorly binding model drug paracetamol, none of the studied excipients showed a satisfactory performance, with maximum tensile strengths < 1 MPa. To reach content uniformity in low dosed ODMTs, Ludiflash® seems to be the most preferable alternative, as the formulation showed the lowest acceptance values (AV) according to Ph.Eur. (<4) as well as the smallest coefficient of variation (CV) in API content (CV < 2%). In conclusion, the study revealed that none CPE is the ideal choice for all approaches, but different CPEs should be selected dependent on different challenges during formulation development of OD(M)Ts.


Subject(s)
Chemistry, Pharmaceutical/methods , Excipients/chemistry , Mannitol/chemistry , Acetaminophen/administration & dosage , Acetaminophen/chemistry , Drug Compounding/methods , Enalapril/administration & dosage , Enalapril/chemistry , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Tablets , Tensile Strength
6.
Int J Pharm ; 602: 120636, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33895296

ABSTRACT

Orodispersible mini-tablets (ODMTs) are a promising dosage form for the pediatric use showing increasing interest from pharmaceutical industry. However, a scale-up process for ODMTs from a compaction simulator to a rotary tablet press following FDA and EMA guidelines has not been performed and investigated yet. Isomalt (galenIQ™721) and Ludiflash® both excipients with proven suitability for the development of ODMTs have been investigated in transfer and scale-up from a compaction simulator to a rotary tablet press. ODMTs with isomalt and Ludiflash® were produced on the rotary tablet press monitoring the product temperature over time and assessing the properties of the residual powder in the feed shoe. Critical quality attributes like tensile strength, mass and disintegration time were evaluated. The transfer from compaction simulator to rotary tablet press succeeded as for both excipients similar disintegration times, tabletability and compactibility profiles were obtained. However, during scale-up, disintegration time significantly increases over time for both excipients. Monitoring of the product temperature revealed that with increasing batch size the product temperature increases as well having a significant impact on disintegration time. The properties of ODMTs produced with the residual powder are comparable in tabletability and disintegration time compared with ODMTs produced from fresh powder.


Subject(s)
Excipients , Child , Drug Compounding , Humans , Powders , Tablets , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...