Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 41(1-2): 5-15, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25957749

ABSTRACT

We have shown marked promotion of both cluster growth and neuronal specification in pluripotent P19 cells with overexpression of solute carrier 38a1 (Slc38a1), which is responsible for membrane transport of glutamine. In this study, we evaluated pharmacological profiles of the green tea amino acid ingredient theanine, which is a good substrate for glutamine transporters, on proliferation and neuronal specification in neural progenitor cells from embryonic rat neocortex. Sustained exposure to theanine, but not glutamine, accelerated the growth of neurospheres composed of proliferating cells and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reducing activity at concentrations of 1-100 µM in undifferentiated progenitor cells. Such prior exposure to theanine promoted spontaneous and induced commitment to a neuronal lineage with concomitant deteriorated astroglial specification. Selective upregulation was seen in the expression of Slc38a1 in progenitor cells cultured with theanine. Similarly significant increases in cluster growth and MTT reducing activity were found in P19 cells cultured with theanine for 4 days. Luciferase activity was doubled in a manner sensitive to the deletion of promoter regions in P19 cells with a luciferase reporter plasmid of the Slc38a1 promoter after sustained exposure to theanine for 4 days. Overexpression of X-box binding protein-1 led to a marked increase in luciferase activity in P19 cells transfected with the Slc38a1 reporter plasmid. These results suggest that theanine accelerates cellular proliferation and subsequent neuronal specification through a mechanism relevant to upregulation of Slc38a1 gene in undifferentiated neural progenitor cells.


Subject(s)
Amino Acid Transport System A/genetics , Cell Differentiation/genetics , Glutamates/pharmacology , Neural Stem Cells/drug effects , Up-Regulation , Animals , Cell Proliferation/genetics , Cells, Cultured , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , RNA, Messenger/genetics , Rats , Rats, Wistar
2.
Biochem Biophys Rep ; 5: 89-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-28955810

ABSTRACT

We have shown marked promotion of both proliferation and neuronal differentiation in pluripotent P19 cells exposed to the green tea amino acid theanine, which is a good substrate for SLC38A1 responsible for glutamine transport. In this study, we evaluated the activity of the mammalian target of rapamycin (mTOR) kinase pathway, which participates in protein translation, cell growth and autophagy in a manner relevant to intracellular glutamine levels, in murine neural progenitor cells exposed to theanine. Exposure to theanine promoted the phosphorylation of mTOR and downstream proteins in neurospheres from embryonic mouse neocortex. Although stable overexpression of SLC38A1 similarly facilitated phosphorylation of mTOR-relevant proteins in undifferentiated P19 cells, theanine failed to additionally accelerate the increased phosphorylation in these stable transfectants. Theanine accelerated the formation of neurospheres from murine embryonic neocortex and adult hippocampus, along with facilitation of both 5-bromo-2'-deoxyuridine incorporation and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction in embryonic neurospheres. In embryonic neurospheres previously exposed to theanine, a significant increase was seen in the number of cells immunoreactive for a neuronal marker protein after spontaneous differentiation. These results suggest that theanine activates the mTOR signaling pathway for proliferation together with accelerated neurogenesis in murine undifferentiated neural progenitor cells.

3.
J Pharmacol Sci ; 127(3): 292-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25837925

ABSTRACT

Posttraumatic stress disorder is a long-lasting psychiatric disease with the consequence of hippocampal atrophy in humans exposed to severe fatal stress. We demonstrated a positive correlation between the transient decline of 5-bromo-2'-deoxyuridine (BrdU) incorporation in the hippocampal dentate gyrus (DG) and long-lasting behavioral abnormalities in mice with traumatic stress. Here, we investigated pharmacological properties of theanine on the declined BrdU incorporation and abnormal behaviors in mice with traumatic stress. Prior daily oral administration of theanine at 50-500 mg/kg for 5 days significantly prevented the decline of BrdU incorporation, while theanine significantly prevented the decline in the DG even when administered for 5 days after stress. Consecutive daily administration of theanine significantly inhibited the prolonged immobility in mice with stress in forced swimming test seen 14 days later. Although traumatic stress significantly increased spontaneous locomotor activity over 30 min even when determined 14 days later, the increased total locomotion was significantly ameliorated following the administration of theanine at 50 mg/kg for 14 days after stress. These results suggest that theanine alleviates behavioral abnormalities together with prevention of the transient decline of BrdU incorporation in the hippocampal DG in adult mice with severe traumatic stress.


Subject(s)
Behavior, Animal/drug effects , Bromodeoxyuridine/metabolism , Dentate Gyrus/metabolism , Glutamates/administration & dosage , Glutamates/pharmacology , Mental Disorders/drug therapy , Mental Disorders/etiology , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/psychology , Administration, Oral , Animals , Disease Models, Animal , Locomotion/drug effects , Male , Mice, Inbred Strains , Motor Activity/drug effects , Severity of Illness Index , Stress Disorders, Post-Traumatic/complications
4.
PLoS One ; 8(5): e63947, 2013.
Article in English | MEDLINE | ID: mdl-23691122

ABSTRACT

BACKGROUND: We have previously shown marked upregulation of the mRNA and corresponding protein for the cellular motor molecule myosin VI (Myo6) after an extremely traumatic stress experience, along with a delayed decrease in 5-bromo-2'-deoxyuridine incorporation in the murine hippocampus, a brain structure believed to undergo adult neurogenesis. In this study, we investigated the role of Myo6 in both proliferation and differentiation in pluripotent P19 cells by using stable transfection and RNA interference techniques. METHODOLOGY/PRINCIPAL FINDINGS: Stable overexpression of Myo6 not only led to significant inhibition of the reducing activity of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and the size of clustered aggregates in P19 cells, but also resulted in selectively decreased mRNA expression of the repressor type proneural gene Hes5 without affecting the expression of neuronal and astroglial marker proteins. In P19 cells transfected with Myo6 siRNA, by contrast, a significant increase was found in the size of aggregate and MTT reduction along with increased Sox2 protein levels, in addition to marked depletion of the endogenous Myo6 protein. In C6 glioma cells, however, introduction of Myo6 siRNA induced a drastic decrease in endogenous Myo6 protein levels without significantly affecting MTT reduction. The Ca(2+) ionophore A23187 drastically increased the luciferase activity in P19 cells transfected with a Myo6 promoter reporter plasmid, but not in HEK293, Neuro2A and C6 glioma cells transfected with the same reporter. CONCLUSIONS/SIGNIFICANCE: These results suggest that Myo6 may play a predominant pivotal role in the mechanism underlying proliferation without affecting differentiation to progeny lineages in pluripotent P19 cells.


Subject(s)
Cell Differentiation/physiology , Myosin Heavy Chains/metabolism , Pluripotent Stem Cells/metabolism , Analysis of Variance , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , DNA Primers/genetics , Luciferases , Mice , RNA Interference , RNA, Small Interfering/genetics , Repressor Proteins/metabolism , Tetrazolium Salts , Thiazoles , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...