Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Biol ; 37(4): 557-64, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27498501

ABSTRACT

Heat treatment of wood leads to chemical, structural and physical changes in wood constituents, which can significantly affect the bonding performance of wood in several ways depending on the adhesive type used. In the present study, fir (Abies bornmülleriana Mattf.) and beech (Fagus orientalis L.) were heat treated at 170 degrees C, 180 degrees C, 190 degrees C, 200 and 212 degrees C for 2 hours. Four different types of adhesives were used for bonding process: melamine-urea-formaldehyde (MUF), melamine formaldehyde (MF), phenol formaldehyde (PF), and polyurethane (PUR). For all the pretreatment conditions, highest shear strength of adhesive bonds of each adhesive system was observed for untreated samples and shear strength decreased with increasing heat treatment. The strength of each adhesive bond of samples which were soaked in water was much less than dry samples, approximately half of the dry strength. Generally, the shear strength of the adhesive bonds after boiling was smaller than or similar to the values obtained for soaking. The untreated samples lost more strength after soaking and boiling than heat treated samples. With increasing heat treatment severity, reduction in shear strength increased in dry samples while decreased in soaking and boiling samples. For instance, after soaking, the untreated samples lost more strength (almost 39%) than heat treated samples (almost 24% for most severely heat treated samples). The results showed that the shear strength of adhesive bonds was influenced by heat treatment and depended on pretreatment of samples prior to testing. In general, all adhesives used performed in quite a similar way for all pretreatment conditions, and the bonding performance of heat treated fir wood was less satisfactory than that of beech wood for all adhesive system and condition.


Subject(s)
Abies/chemistry , Adhesives/chemistry , Fagus/chemistry , Wood/chemistry , Hot Temperature , Shear Strength
2.
J Environ Biol ; 31(3): 351-5, 2010 May.
Article in English | MEDLINE | ID: mdl-21047010

ABSTRACT

The aim of this study is to determine some physical and mechanical properties of Paulownia tomentosa wood grown in Turkey. The samples trees harvested from Kargi in Corum. Physical properties including air-dry density oven-dry density basic density swelling, shrinkage and oven-dry and air-dry thermal conductivity coefficients; mechanical properties including bending strength, modulus of elasticity in bending, compression strength parallel to grain, hardness, bonding strength were analyzed. Paulownia tomentosa wood's air dry and oven dry densities were determined as 0.317 and 0.294 g cm(-3); basic density was determined as 0.272 g cm(-3); volumetric shrinkage and swelling were determined as 7.78 and 8.41%; tangential, radial and longitudinal air-dry thermal conductivity coefficients were determined as 0.089, 0.090 and 0.133 kcal/mh degrees C, respectively. Fiber saturation point (FSP) was found 28.79%; bending strength, Modulus of elasticity in bending, compression strength parallel to grain and Brinell hardness values (parallel and perpendicular to grain) were determined as 43.56 N mm(-2), 4281.32 N mm(-2), 25.55 N mm(-2), 2.01 kgf mm(-2) and 0.88 kgf mm(-2), respectively. Consequently paulownia wood can be widely used for various purposes such as house construction, furniture making, pulp and paper and handicrafts.


Subject(s)
Magnoliopsida , Mechanical Phenomena , Wood , Turkey
3.
J Environ Biol ; 31(6): 1007-11, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21506490

ABSTRACT

The Finnish wood heat treatment technology ThermoWood, was recently introduced to Turkey. Data about the mechanical and physical properties of Turkish wood species are important for industry and academia. In this study two industrially important Turkish wood species, pine (Pinus nigraArnold.) and fir (Abies bornmülleriana Matf.) were heat-treated using the ThermoWood process. Pine and fir samples were thermally modified for 2 hr at 212 and 190 degrees C, respectively. The modulus of rupture (MOR), modulus of elasticity in bending (MOE), impact bending strength (IBS), and compression strength (CS), in addition to swelling (Sw) and shrinkage (Sh) of thermally-modified wood were examined. The results indicate that the heat treatment method clearly decreased the MOR, MOE and lBS of pine and fir. However, a small increase was observed for CS values of heat treated wood species. The most affected mechanical properties were MOR and lBS for both pine and fir. The reduction in MOE was smaller than that in MOR and lBS. Volumetric shrinkage and swelling of these species were also improved by approximately half. In Addition, the changes in the mechanical and physical properties studied in pine were larger than that of fir.


Subject(s)
Abies/chemistry , Hot Temperature , Pinus/chemistry , Wood/chemistry , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...