Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 222(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37389656

ABSTRACT

The GPI-anchoring pathway plays important roles in normal development and immune modulation. MHC Class I Polypeptide-related Sequence A (MICA) is a stress-induced ligand, downregulated by human cytomegalovirus (HCMV) to escape immune recognition. Its most prevalent allele, MICA*008, is GPI-anchored via an uncharacterized pathway. Here, we identify cleft lip and palate transmembrane protein 1-like protein (CLPTM1L) as a GPI-anchoring pathway component and show that during infection, the HCMV protein US9 downregulates MICA*008 via CLPTM1L. We show that the expression of some GPI-anchored proteins (CD109, CD59, and MELTF)-but not others (ULBP2, ULBP3)-is CLPTM1L-dependent, and further show that like MICA*008, MELTF is downregulated by US9 via CLPTM1L during infection. Mechanistically, we suggest that CLPTM1L's function depends on its interaction with a free form of PIG-T, normally a part of the GPI transamidase complex. We suggest that US9 inhibits this interaction and thereby downregulates the expression of CLPTM1L-dependent proteins. Altogether, we report on a new GPI-anchoring pathway component that is targeted by HCMV.


Subject(s)
Cytomegalovirus Infections , Membrane Proteins , Humans , Alleles , Cytomegalovirus , Membrane Proteins/genetics , Neoplasm Proteins , Transcription Factors , Cytomegalovirus Infections/metabolism
2.
iScience ; 25(9): 104935, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35992307

ABSTRACT

The global pandemic caused by SARS-CoV-2 is a major public health problem. Virus entry occurs via binding to ACE2. Five SARS-CoV-2 variants of concern (VOCs) were reported so far, all having immune escape characteristics. Infection with the current VOC Omicron was noticed in immunized and recovered individuals; therefore, the development of new treatments against VOC infections is urgently needed. Most approved mAbs treatments against SARS-CoV-2 are directed against the spike protein of the original virus and are therefore inefficient against Omicron. Here, we report on the generation of hACE2.16, an anti-ACE2 antibody that recognizes and blocks ACE2-RBD binding without affecting ACE2 enzymatic activity. We demonstrate that hACE2.16 binding to ACE2 does not affect its surface expression and that hACE2.16 blocks infection and virus production of various VOCs including Omicron BA.1 and BA.2. hACE2.16 might, therefore, be an efficient treatment against all VOCs, the current and probably also future ones.

3.
PLoS One ; 17(3): e0264897, 2022.
Article in English | MEDLINE | ID: mdl-35294457

ABSTRACT

NK-92 cells are an off-the-shelf, cell-based immunotherapy currently in clinical trials for a variety of cancer types. As the most 'NK-like' cell line available, it is also an important research tool. To date, NK-92 cells have been cultivated in a costly and time-consumingly prepared specialized medium, complicating research with these cells. Here we show that NK-92 cells grow in the comparatively user-friendly RPMI medium supplemented with IL-2. We demonstrate that their metabolic activity and replication rates are even improved in RPMI. Furthermore, they can be grown in cell culture dishes and do not need to be expanded in ventilated flasks. We show that in RPMI the cells retain functional characteristics relating to receptor expression, IFN-γ secretion, and killing. Our findings will enable more researchers to work with and manipulate this cell line, hopefully leading to further discoveries and improved therapies.


Subject(s)
Cytotoxicity, Immunologic , Neoplasms , Cell Culture Techniques , Culture Media/metabolism , Humans , Immunotherapy , Killer Cells, Natural/metabolism , Neoplasms/metabolism , Neoplasms/therapy
4.
PLoS Pathog ; 17(12): e1010175, 2021 12.
Article in English | MEDLINE | ID: mdl-34929007

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Protein Domains , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites , Binding Sites, Antibody , COVID-19/prevention & control , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/therapeutic use , Mice, Transgenic , Neutralization Tests , Protein Binding , Recombinant Fusion Proteins/therapeutic use , SARS-CoV-2/drug effects , Vero Cells
5.
Haematologica ; 106(7): 1846-1856, 2021 07 01.
Article in English | MEDLINE | ID: mdl-32467141

ABSTRACT

Anti-RhD antibodies are widely used in clinical practice to prevent immunization against RhD, principally in hemolytic disease of the fetus and newborn. Intriguingly, this disease is induced by production of the very same antibodies when an RhD negative woman is pregnant with an RhD positive fetus. Despite over five decades of use, the mechanism of this treatment is, surprisingly, still unclear. Here we show that anti-RhD antibodies induce human natural killer (NK) cell degranulation. Mechanistically, we demonstrate that NK cell degranulation is mediated by binding of the Fc segment of anti-RhD antibodies to CD16, the main Fcγ receptor expressed on NK cells. We found that this CD16 activation is dependent upon glycosylation of the anti-RhD antibodies. Furthermore, we show that anti-RhD antibodies induce NK cell degranulation in vivo in patients who receive this treatment prophylactically. Finally, we demonstrate that the anti-RhD drug KamRho enhances the killing of dendritic cells. We suggest that this killing leads to reduced activation of adaptive immunity and may therefore affect the production of anti-RhD antibodies.


Subject(s)
Killer Cells, Natural , Receptors, IgG , Female , Fetus/metabolism , Glycosylation , Humans , Infant, Newborn , Lymphocyte Activation , Pregnancy , Receptors, IgG/metabolism
6.
J Immunother Cancer ; 8(1)2020 06.
Article in English | MEDLINE | ID: mdl-32503945

ABSTRACT

BACKGROUND: The use of checkpoint inhibitors has revolutionized cancer therapy. Unfortunately, these therapies often cause immune-related adverse effects, largely due to a lack of tumor specificity. METHODS: We stained human natural killer cells using fusion proteins composed of the extracellular portion of various tumor markers fused to the Fc portion of human IgG1, and identified Nectin4 as a novel TIGIT ligand. Next, we generated a novel Nectin4 blocking antibody and demonstrated its efficacy as a checkpoint inhibitor in killing assays and in vivo. RESULTS: We identify Nectin4 to be a novel ligand of TIGIT. We showed that, as opposed to all other known TIGIT ligands, which bind also additional receptors, Nectin4 interacts only with TIGIT. We show that the TIGIT-Nectin4 interaction inhibits natural killer cell activity, a critical part of the innate immune response. Finally, we developed blocking Nectin4 antibodies and demonstrated that they enhance tumor killing in vitro and in vivo. CONCLUSION: We discovered that Nectin4 is a novel ligand for TIGIT and demonstrated that specific antibodies against it enhance tumor cell killing in vitro and in vivo. Since Nectin4 is expressed almost exclusively on tumor cells, our Nectin4-blocking antibodies represent a combination of cancer specificity and immune checkpoint activity, which may prove more effective and safe for cancer immunotherapy.


Subject(s)
Cell Adhesion Molecules/metabolism , Immunotherapy/methods , Receptors, Immunologic/metabolism , Animals , Female , Humans , Ligands , Mice
7.
iScience ; 11: 466-473, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30661002

ABSTRACT

Long, non-coding RNAs (lncRNAs) are involved in the regulation of many cellular processes. The lncRNA IFNG-AS1 was found to strongly influence the responses to several pathogens in mice by increasing interferon gamma (IFNγ) secretion. Studies have looked at IFNG-AS1 in T cells, yet IFNG-AS1 function in natural killer cells (NKs), an important source of IFNγ, remains unknown. Here, we show a previously undescribed sequence of IFNG-AS1 and report that it may be more abundant in cells than previously thought. Using primary human NKs and an NK line with IFNG-AS1 overexpression, we show that IFNG-AS1 is quickly induced upon NK cell activation, and that IFNG-AS1 overexpression leads to increased IFNγ secretion. Taken together, our work expands IFNG-AS1's activity to the innate arm of the type I immune response, helping to explain its notable effect in animal models of disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...