Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Transl Psychiatry ; 14(1): 189, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605038

ABSTRACT

While epigenetic modifications have been implicated in ADHD through studies of peripheral tissue, to date there has been no examination of the epigenome of the brain in the disorder. To address this gap, we mapped the methylome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from fifty-eight individuals with or without ADHD. While no single probe showed adjusted significance in differential methylation, several differentially methylated regions emerged. These regions implicated genes involved in developmental processes including neurogenesis and the differentiation of oligodendrocytes and glial cells. We demonstrate a significant association between differentially methylated genes in the caudate and genes implicated by GWAS not only in ADHD but also in autistic spectrum, obsessive compulsive and bipolar affective disorders through GWAS. Using transcriptomic data available on the same subjects, we found modest correlations between the methylation and expression of genes. In conclusion, this study of the cortico-striatal methylome points to gene and gene pathways involved in neurodevelopment, consistent with studies of common and rare genetic variation, as well as the post-mortem transcriptome in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Epigenome , Humans , Attention , Attention Deficit Disorder with Hyperactivity/diagnosis , Brain , Corpus Striatum
2.
iScience ; 27(3): 109113, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38375233

ABSTRACT

Pubertal timing, including age at menarche (AAM), is a heritable trait linked to lifetime health outcomes. Here, we investigate genetic mechanisms underlying AAM by combining genome-wide association study (GWAS) data with investigations of two rare genetic conditions clinically associated with altered AAM: Williams syndrome (WS), a 7q11.23 hemideletion characterized by early puberty; and duplication of the same genes (7q11.23 Duplication syndrome [Dup7]) characterized by delayed puberty. First, we confirm that AAM-derived polygenic scores in typically developing children (TD) explain a modest amount of variance in AAM (R2 = 0.09; p = 0.04). Next, we demonstrate that 7q11.23 copy number impacts AAM (WS < TD < Dup7; p = 1.2x10-8, η2 = 0.45) and pituitary volume (WS < TD < Dup7; p = 3x10-5, ηp2 = 0.2) with greater effect sizes. Finally, we relate an AAM-GWAS signal in 7q11.23 to altered expression in postmortem brains of STAG3L2 (p = 1.7x10-17), a gene we also find differentially expressed with 7q11.23 copy number (p = 0.03). Collectively, these data explicate the role of 7q11.23 in pubertal onset, with STAG3L2 and pituitary development as potential mediators.

3.
J Neurodev Disord ; 15(1): 29, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37633900

ABSTRACT

BACKGROUND: Williams syndrome (WS), a rare neurodevelopmental disorder caused by hemizygous deletion of ~ 25 genes from chromosomal band 7q11.23, affords an exceptional opportunity to study associations between a well-delineated genetic abnormality and a well-characterized neurobehavioral profile. Clinically, WS is typified by increased social drive (often termed "hypersociability") and severe visuospatial construction deficits. Previous studies have linked visuospatial problems in WS with alterations in the dorsal visual processing stream. We investigated the impacts of hemideletion and haplotype variation of LIMK1, a gene hemideleted in WS and linked to neuronal maturation and migration, on the structure and function of the dorsal stream, specifically the intraparietal sulcus (IPS), a region known to be altered in adults with WS. METHODS: We tested for IPS structural and functional changes using longitudinal MRI in a developing cohort of children with WS (76 visits from 33 participants, compared to 280 visits from 94 typically developing age- and sex-matched participants) over the age range of 5-22. We also performed MRI studies of 12 individuals with rare, shorter hemideletions at 7q11.23, all of which included LIMK1. Finally, we tested for effects of LIMK1 variation on IPS structure and imputed LIMK1 expression in two independent cohorts of healthy individuals from the general population. RESULTS: IPS structural (p < 10-4 FDR corrected) and functional (p < .05 FDR corrected) anomalies previously reported in adults were confirmed in children with WS, and, consistent with an enduring genetic mechanism, were stable from early childhood into adulthood. In the short hemideletion cohort, IPS deficits similar to those in WS were found, although effect sizes were smaller than those found in WS for both structural and functional findings. Finally, in each of the two general population cohorts stratified by LIMK1 haplotype, IPS gray matter volume (pdiscovery < 0.05 SVC, preplication = 0.0015) and imputed LIMK1 expression (pdiscovery = 10-15, preplication = 10-23) varied according to LIMK1 haplotype. CONCLUSIONS: This work offers insight into neurobiological and genetic mechanisms responsible for the WS phenotype and also more generally provides a striking example of the mechanisms by which genetic variation, acting by means of molecular effects on a neural intermediary, can influence human cognition and, in some cases, lead to neurocognitive disorders.


Subject(s)
Williams Syndrome , Child, Preschool , Adult , Humans , Child , Haplotypes , Williams Syndrome/complications , Williams Syndrome/genetics , Cerebral Cortex , Cognition , Gray Matter , Lim Kinases/genetics
4.
Neuropsychopharmacology ; 48(5): 764-772, 2023 04.
Article in English | MEDLINE | ID: mdl-36694041

ABSTRACT

A new era of human postmortem tissue research has emerged thanks to the development of 'omics technologies that measure genes, proteins, and spatial parameters in unprecedented detail. Also newly possible is the ability to construct polygenic scores, individual-level metrics of genetic risk (also known as polygenic risk scores/PRS), based on genome-wide association studies, GWAS. Here, we report on clinical, educational, and brain gene expression correlates of polygenic scores in ancestrally diverse samples from the Human Brain Collection Core (HBCC). Genotypes from 1418 donors were subjected to quality control filters, imputed, and used to construct polygenic scores. Polygenic scores for schizophrenia predicted schizophrenia status in donors of European ancestry (p = 4.7 × 10-8, 17.2%) and in donors with African ancestry (p = 1.6 × 10-5, 10.4% of phenotypic variance explained). This pattern of higher variance explained among European ancestry samples was also observed for other psychiatric disorders (depression, bipolar disorder, substance use disorders, anxiety disorders) and for height, body mass index, and years of education. For a subset of 223 samples, gene expression from dorsolateral prefrontal cortex (DLPFC) was available through the CommonMind Consortium. In this subgroup, schizophrenia polygenic scores also predicted an aggregate gene expression score for schizophrenia (European ancestry: p = 0.0032, African ancestry: p = 0.15). Overall, polygenic scores performed as expected in ancestrally diverse samples, given historical biases toward use of European ancestry samples and variable predictive power of polygenic scores across phenotypes. The transcriptomic results reported here suggest that inherited schizophrenia genetic risk influences gene expression, even in adulthood. For future research, these and additional polygenic scores are being made available for analyses, and for selecting samples, using postmortem tissue from the Human Brain Collection Core.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Genome-Wide Association Study , Schizophrenia/genetics , Bipolar Disorder/genetics , Multifactorial Inheritance , Brain , Genetic Predisposition to Disease/genetics
5.
Article in English | MEDLINE | ID: mdl-33712377

ABSTRACT

BACKGROUND: The rs1344706 single nucleotide polymorphism in the ZNF804A gene has been associated with risk for psychosis in multiple genome-wide association studies, yet mechanisms underlying this association are not known. Given preclinical work suggesting an impact of ZNF804A on dopamine receptor gene transcription and clinical studies establishing dopaminergic dysfunction in patients with schizophrenia, we hypothesized that the ZNF804A risk single nucleotide polymorphism would be associated with variation in dopamine receptor availability in the human brain. METHODS: In this study, 72 healthy individuals genotyped for rs1344706 completed both [18F]fallypride and [11C]NNC-112 positron emission tomography scans to measure D2/D3 and D1 receptor availability, respectively. Genetic effects on estimates of binding potential for each ligand were tested first with canonical subject-specific striatal regions of interest analyses, followed by exploratory whole-brain voxelwise analyses to test for more localized striatal signals and for extrastriatal effects. RESULTS: Region of interest analyses revealed significantly less D2/D3 receptor availability in risk-allele homozygotes (TT) compared with non-risk allele carriers (G-allele carrier group: TG and GG) in the associative striatum and sensorimotor striatum, but no significant differences in striatal D1 receptor availability. CONCLUSIONS: These data suggest that ZNF804A genotype may be meaningfully linked to dopaminergic function in the human brain. The results also may provide information to guide future studies of ZNF804A-related mechanisms of schizophrenia risk.


Subject(s)
Genome-Wide Association Study , Receptors, Dopamine , Humans , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Brain/diagnostic imaging , Brain/metabolism , Genotype , Positron-Emission Tomography/methods , Dopamine/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
6.
Am J Med Genet B Neuropsychiatr Genet ; 186(5): 329-338, 2021 07.
Article in English | MEDLINE | ID: mdl-34487600

ABSTRACT

Schizophrenia has been hypothesized to be a human-specific condition, but experimental approaches to testing this idea have been limited. Because Neanderthals, our closest evolutionary relatives, interbred with modern humans prior to their disappearance from the fossil record, leaving a residual echo that survives in our DNA today, we leveraged new discoveries about ancient hominid DNA to explore this hypothesis in living people in three converging ways. First, in four independent case-control datasets totaling 9,362 individuals, individuals with schizophrenia had less Neanderthal-derived genetic variation than controls (p = .044). Second, in 49 unmedicated inpatients with schizophrenia, having more Neanderthal admixture predicted less severe positive symptoms (p = .046). Finally, using 18 F-fluorodopa PET scanning in 172 healthy individuals, having greater Neanderthal introgression was significantly associated with lower dopamine synthesis capacity in the striatum and pons (p's < 2 × 10-5 ), which is fundamentally important in the pathophysiology and treatment of psychosis. These results may help to elucidate the evolutionary history of a devastating neuropsychiatric disease by supporting the notion of schizophrenia as a human-specific condition. Additionally, the relationship between Neanderthal admixture and dopamine function suggests a potential mechanism whereby Neanderthal admixture may have affected our gene pool to alter schizophrenia risk and/or course.


Subject(s)
Hominidae , Neanderthals , Psychotic Disorders , Schizophrenia , Animals , Dopamine , Genetic Variation , Humans , Neanderthals/genetics , Psychotic Disorders/diagnosis , Psychotic Disorders/genetics , Schizophrenia/diagnosis , Schizophrenia/genetics
7.
Brain Connect ; 11(1): 38-44, 2021 02.
Article in English | MEDLINE | ID: mdl-33218283

ABSTRACT

Aim: To determine whether Neanderthal-derived genetic variation relates to functional connectivity patterns in the brains of living modern humans. Introduction: Nearly 50,000 years ago, Neanderthals interbred with ancestors of modern humans, imparting a genetic legacy that lives on today. The vestiges of this Neanderthal-derived genetic variation have been previously shown to be enriched in genes coding for neurogenesis and myelination and to alter skull shape and brain structure in living people. Materials and Methods: Using two independent cohorts totaling 553 healthy individuals, we employed multivariate distance matrix regression (MDMR) to determine whether any brain areas exhibited whole-brain functional connectivity patterns that significantly related to the degree of Neanderthal introgression. Identified clusters were then used as regions of interest in follow-up seed-based functional connectivity analyses to determine the connectivity patterns driving the relationships. Results: The MDMR analysis revealed that the percentage of Neanderthal-originating polymorphisms was significantly associated with the functional connectivity patterns of an area of the intraparietal sulcus (IPS) that was nearly identical in both cohorts. Using these IPS clusters as regions of interest in seed-based connectivity analyses, we found, again in both cohorts, that individuals with a higher proportion of Neanderthal-derived genetic variation showed increased IPS functional connectivity with visual processing regions, but decreased IPS connectivity with regions underlying social cognition. Conclusions: These findings demonstrate that the remnants of Neanderthal admixture continue to influence human brain function today, in ways that are consistent with anthropological conceptualizations of Neanderthal phenotypes, including the possibility that Neanderthals may have depended upon visual processing capabilities at the expense of social cognition, and this may have contributed to the extinction of this species through reduced cultural maintenance and inability to cope with fluctuating resources. This and other studies capitalizing on the emerging science surrounding ancient DNA provide a window through which to view an ancient lineage long past.


Subject(s)
Neanderthals , Animals , Brain , Genetic Variation/genetics , Humans , Magnetic Resonance Imaging , Neanderthals/genetics
8.
BMC Med Genet ; 19(1): 53, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29614955

ABSTRACT

BACKGROUND: Williams syndrome ([WS], 7q11.23 hemideletion) and 7q11.23 duplication syndrome (Dup7) show contrasting syndromic symptoms. However, within each group there is considerable interindividual variability in the degree to which these phenotypes are expressed. Though software exists to identify areas of copy number variation (CNV) from commonly-available SNP-chip data, this software does not provide non-diploid genotypes in CNV regions. Here, we describe a method for identifying haploid and triploid genotypes in CNV regions, and then, as a proof-of-concept for applying this information to explain clinical variability, we test for genotype-phenotype associations. METHODS: Blood samples for 25 individuals with WS and 13 individuals with Dup7 were genotyped with Illumina-HumanOmni5M SNP-chips. PennCNV and in-house code were used to make genotype calls for each SNP in the 7q11.23 locus. We tested for association between the presence of aortic arteriopathy and genotypes of the remaining (haploid in WS) or duplicated (triploid in Dup7) alleles. RESULTS: Haploid calls in the 7q11.23 region were made for 99.0% of SNPs in the WS group, and triploid calls for 98.8% of SNPs in those with Dup7. The G allele of SNP rs2528795 in the ELN gene was associated with aortic stenosis in WS participants (p < 0.0049) while the A allele of the same SNP was associated with aortic dilation in Dup7. CONCLUSIONS: Commonly available SNP-chip information can be used to make haploid and triploid calls in individuals with CNVs and then to relate variability in specific genes to variability in syndromic phenotypes, as demonstrated here using aortic arteriopathy. This work sets the stage for similar genotype-phenotype analyses in CNVs where phenotypes may be more complex and/or where there is less information about genetic mechanisms.


Subject(s)
Genotyping Techniques/methods , Haploidy , Triploidy , Williams Syndrome/genetics , Adolescent , Child , DNA Copy Number Variations , Female , Genetic Association Studies , Humans , Male , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
9.
Neuroimage ; 162: 373-383, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28867340

ABSTRACT

Adaptive learning impairments are common in cognitive and behavioral disorders, but the neurogenetic mechanisms supporting human affective learning are poorly understood. We designed a higher-order contextual learning task in which healthy participants genotyped for the Val66Met polymorphism of the brain derived neurotropic factor gene (BDNF) were required to choose the member of a picture pair most congruent with the emotion in a previously-viewed facial expression video in order to produce an advantageous monetary outcome. Functional magnetic resonance imaging (fMRI) identified frontolimbic blood oxygenation level dependent (BOLD) reactivity that was associated with BDNF Val66Met genotype during all three phases of the learning task: aversive and reward-predictive learning, contextually-challenging decision-making, and choice-related monetary loss-avoidance and gain outcomes. Relative to Val homozygotes, Met carriers showed attenuated ventromedial prefrontal response to predictive affective cues, dorsolateral prefrontal signaling that depended on decision difficulty, and enhanced ventromedial prefrontal reactivity that was specific to loss-avoidance. These findings indicate that the BDNF Val66Met polymorphism is associated with functional tuning of behaviorally-relevant frontolimbic circuitry, particularly involving the ventromedial prefrontal cortex, during higher-order learning.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Decision Making/physiology , Learning/physiology , Prefrontal Cortex/physiology , Adolescent , Adult , Female , Genotype , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
10.
Article in English | MEDLINE | ID: mdl-29560901

ABSTRACT

BACKGROUND: We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. METHODS: In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. RESULTS: There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p < .05). There were also similar associations for risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p < .05 familywise error [small volume correction-hippocampal region of interest]). Of the 29 individual single nucleotide polymorphisms used in calculating LOAD-RPS, variants in CLU, PICALM, BCL3, PVRL2, and RELB showed strong effects (p < .05 familywise error [small volume correction-hippocampal region of interest]) on hippocampal function, though none survived further correction for the number of single nucleotide polymorphisms tested. CONCLUSIONS: There is a cumulative deleterious effect of LOAD risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Genetic Predisposition to Disease , Hippocampus/physiopathology , Late Onset Disorders/genetics , Late Onset Disorders/physiopathology , Adult , Alzheimer Disease/diagnostic imaging , Apolipoproteins E/genetics , Brain Mapping , Hippocampus/diagnostic imaging , Humans , Late Onset Disorders/diagnostic imaging , Magnetic Resonance Imaging , Middle Aged , Multifactorial Inheritance , Neuropsychological Tests , Risk Factors , Young Adult
11.
Cereb Cortex ; 27(3): 2175-2182, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27005989

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is an important modulator of constitutive stress responses mediated by limbic frontotemporal circuits, and its gene contains a functional polymorphism (Val66Met) that may influence trait stress sensitivity. Reports of an association of this polymorphism with anxiety-related personality traits have been controversial and without clear neurophysiological support. We, therefore, determined the relationship between resting regional cerebral blood flow (rCBF) and a well-validated measure of anxiety-related personality, the TPQ Harm Avoidance (HA) scale, as a function of BDNF Val66Met genotype. Sixty-four healthy participants of European ancestry underwent resting H215O positron emission tomography scans. For each genotype group separately, we first determined the relationship between participants' HA scores and their resting rCBF values in each voxel across the entire brain, and then directly compared these HA-rCBF relationships between Val66Met genotype groups. HA-rCBF relationships differed between Val homozygotes and Met carriers in several regions relevant to stress regulation: subgenual cingulate, orbital frontal cortex, and the hippocampal/parahippocampal region. In each of these areas, the relationship was positive in Val homozygotes and negative in Met carriers. These data demonstrate a coupling between trait anxiety and basal resting blood flow in frontolimbic neurocircuitry that may be determined in part by genetically mediated BDNF signaling.


Subject(s)
Anxiety/genetics , Anxiety/physiopathology , Brain-Derived Neurotrophic Factor/genetics , Brain/physiology , Personality/genetics , Personality/physiology , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping , Cerebrovascular Circulation/genetics , Cerebrovascular Circulation/physiology , Female , Heterozygote , Homozygote , Humans , Male , Middle Aged , Personality Tests , Polymorphism, Single Nucleotide , Positron-Emission Tomography , Rest , White People/genetics , Young Adult
12.
Neuropsychopharmacology ; 41(9): 2303-8, 2016 08.
Article in English | MEDLINE | ID: mdl-26924680

ABSTRACT

The synthesis of multiple amine neurotransmitters, such as dopamine, norepinephrine, serotonin, and trace amines, relies in part on DOPA decarboxylase (DDC, AADC), an enzyme that is required for normative neural operations. Because rare, loss-of-function mutations in the DDC gene result in severe enzymatic deficiency and devastating autonomic, motor, and cognitive impairment, DDC common genetic polymorphisms have been proposed as a source of more moderate, but clinically important, alterations in DDC function that may contribute to risk, course, or treatment response in complex, heritable neuropsychiatric illnesses. However, a direct link between common genetic variation in DDC and DDC activity in the living human brain has never been established. We therefore tested for this association by conducting extensive genotyping across the DDC gene in a large cohort of 120 healthy individuals, for whom DDC activity was then quantified with [(18)F]-FDOPA positron emission tomography (PET). The specific uptake constant, Ki, a measure of DDC activity, was estimated for striatal regions of interest and found to be predicted by one of five tested haplotypes, particularly in the ventral striatum. These data provide evidence for cis-acting, functional common polymorphisms in the DDC gene and support future work to determine whether such variation might meaningfully contribute to DDC-mediated neural processes relevant to neuropsychiatric illness and treatment.


Subject(s)
Dopa Decarboxylase/genetics , Dopa Decarboxylase/metabolism , Ventral Striatum/enzymology , Adult , Brain/diagnostic imaging , Brain/enzymology , Dopamine/metabolism , Female , Fluorodeoxyglucose F18 , Haplotypes , Humans , Male , Middle Aged , Polymorphism, Genetic , Positron-Emission Tomography , Ventral Striatum/diagnostic imaging , Young Adult
13.
Eur J Neurosci ; 42(3): 1912-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25997640

ABSTRACT

Dopamine modulation of striatal function is critical for executive functions such as working memory (WM) updating. The dopamine transporter (DAT) regulates striatal dopamine signaling via synaptic reuptake. A variable number of tandem repeats in the 3'-untranslated region of SLC6A3 (DAT1-3'-UTR-VNTR) is associated with DAT expression, such that 9-repeat allele carriers tend to express lower levels (associated with higher extracellular dopamine concentrations) than 10-repeat homozygotes. Aging is also associated with decline of the dopamine system. The goal of the present study was to investigate the effects of aging and DAT1-3'-UTR-VNTR on the neural activity and functional connectivity of the striatum during WM updating. Our results showed both an age-related decrease in striatal activity and an effect of DAT1-3'-UTR-VNTR. Ten-repeat homozygotes showed reduced striatal activity and increased striatal-hippocampal connectivity during WM updating relative to the 9-repeat carriers. There was no age by DAT1-3'-UTR-VNTR interaction. These results suggest that, whereas striatal function during WM updating is modulated by both age and genetically determined DAT levels, the rate of the age-related decline in striatal function is similar across both DAT1-3'-UTR-VNTR genotype groups. They further suggest that, because of the baseline difference in striatal function based on DAT1-3'-UTR-VNTR polymorphism, 10-repeat homozygotes, who have lower levels of striatal function throughout the adult life span, may reach a threshold of decreased striatal function and manifest impairments in cognitive processes mediated by the striatum earlier in life than the 9-repeat carriers. Our data suggest that age and DAT1-3'-UTR-VNTR polymorphism independently modulate striatal function.


Subject(s)
Aging/genetics , Corpus Striatum/physiology , Dopamine Plasma Membrane Transport Proteins/genetics , Memory, Short-Term/physiology , 3' Untranslated Regions , Adult , Aged , Brain Mapping , Female , Hippocampus/physiology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Tandem Repeat Sequences , Young Adult
14.
Schizophr Res ; 155(1-3): 1-7, 2014 May.
Article in English | MEDLINE | ID: mdl-24680031

ABSTRACT

Neurexin 1 (NRXN1) is a presynaptic neuronal adhesion molecule that interacts with postsynaptic neuroligins in both glutamatergic and GABAergic synapses and is important in synaptic formation and function. NRXN1 deletions increase the risk of schizophrenia, so our aims were to explore this in our family sample, to distinguish de novo from inherited mutations, to examine transmission to affected and unaffected siblings and to estimate penetrance. We performed copy number analyses in NRXN1 using data from Illumina BeadArrays from 635 subjects with schizophrenia (276 in genotyped families), 487 of their unaffected parents and 309 unaffected siblings as well as 635 normal controls, all from the CBDB/NIMH Genetic Study of Schizophrenia. Deletions called by software were confirmed by quantitative PCR and comparative genome hybridization. There were deletions in 15 individuals in 11 families, including de novo exonic deletions in one case and one unaffected sibling. We observed no deletions in controls, 7 deletions in cases (1.10%), and an unexpectedly high deletion frequency in parents (n=5, 1.02%) and siblings (n=3, 0.97%). Three families showed inheritance from an unaffected parent, and in two families an unaffected parent did not transmit to the affected offspring. Thus we have added to the evidence that NRXN1 deletions are more frequent in patients with schizophrenia than in healthy individuals. However, the presence of de novo deletions in unaffected relatives and transmission from and to unaffected family members demonstrated that while the deletions may well have been necessary for some carriers to develop schizophrenia, they were not always sufficient.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Family Health , Genetic Predisposition to Disease/genetics , Nerve Tissue Proteins/genetics , Penetrance , Schizophrenia/genetics , Sequence Deletion/genetics , Adolescent , Adult , Calcium-Binding Proteins , Female , Genotype , Humans , Male , Middle Aged , Neural Cell Adhesion Molecules , Young Adult
15.
JAMA Psychiatry ; 71(6): 647-56, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24718902

ABSTRACT

IMPORTANCE: One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation. OBJECTIVE: To identify single-nucleotide polymorphisms associated with general cognitive ability (g) in people with schizophrenia and control individuals. DESIGN, SETTING, AND PARTICIPANTS: Genomewide association study, followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in postmortem brain samples. The discovery cohort and unaffected siblings were participants in the National Institute of Mental Health Clinical Brain Disorders Branch schizophrenia genetics studies. Additional schizophrenia cohorts were from psychiatric treatment settings in the United States, Japan, and Germany. The discovery cohort comprised 339 with schizophrenia and 363 community control participants. Follow-up analyses studied 147 unaffected siblings of the schizophrenia cases and independent schizophrenia samples including a total of an additional 668 participants. Imaging analyses included 87 schizophrenia cases and 397 control individuals. Brain tissue samples were available for 64 cases and 61 control individuals. MAIN OUTCOMES AND MEASURES: We studied genomewide association with g, by group, in the discovery cohort. We used selected genotypes to test specific associations in unaffected siblings and independent schizophrenia samples. Imaging analyses focused on activation in the prefrontal cortex during working memory. Brain tissue studies yielded messenger RNA expression levels for RefSeq transcripts. RESULTS: The schizophrenia discovery cohort showed genomewide-significant association of g with polymorphisms in sodium channel gene SCN2A, accounting for 10.4% of g variance (rs10174400, P = 9.27 × 10(-10)). Control individuals showed a trend for g/genotype association with reversed allelic directionality. The genotype-by-group interaction was also genomewide significant (P = 1.75 × 10(-9)). Siblings showed a genotype association with g parallel to the schizophrenia group and the same interaction pattern. Parallel, but weaker, associations with cognition were found in independent schizophrenia samples. Imaging analyses showed a similar pattern of genotype associations by group and genotype-by-group interaction. Sequencing of RNA in brain revealed reduced expression in 2 of 3 SCN2A alternative transcripts in the patient group, with genotype-by-group interaction, that again paralleled the cognition effects. CONCLUSIONS AND RELEVANCE: The findings implicate SCN2A and sodium channel biology in cognitive impairment in schizophrenia cases and unaffected relatives and may facilitate development of cognition-enhancing treatments.


Subject(s)
Brain/physiology , Cognition/physiology , Genetic Predisposition to Disease/genetics , NAV1.2 Voltage-Gated Sodium Channel/genetics , Prefrontal Cortex/physiopathology , Schizophrenia/genetics , Schizophrenic Psychology , Adolescent , Adult , Brain/metabolism , Case-Control Studies , Female , Functional Neuroimaging , Gene Expression/genetics , Gene Expression/physiology , Genome-Wide Association Study , Genotype , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/physiology , RNA, Messenger/metabolism , Schizophrenia/metabolism , Schizophrenia/physiopathology , Siblings , Young Adult
16.
J Neurosci ; 34(14): 4929-40, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24695712

ABSTRACT

Early in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12A2) encodes one of two cation chloride cotransporters mediating the conversion of GABA from excitatory to inhibitory. Using 3' and 5' RACE and PCR, we verified previously characterized alternative transcripts of NKCC1a (1-27) and NKCC1b (1-27(Δ21)), identified new NKCC1 transcripts, and explored their expression patterns during human prefrontal cortical development. A novel ultra-short transcript (1-2a) was expressed preferentially in the fetus. Expression of NKCC1b and 1-2a were decreased in schizophrenia compared with controls (NKCC1b: 0.8-fold decrease, p = 0.013; 1-2a: 0.8-fold decrease, p = 0.006). Furthermore, the expression of NKCC1b was associated with NKCC1 polymorphism rs3087889. The minor allele at rs3087889, associated with reduced NKCC1b expression (homozygous for major allele: N = 37; homozygous for minor allele: N = 15; 1.5-fold decrease; p < 0.01), was also associated with a modest increase in schizophrenia risk in a case-control sample (controls: N = 435; cases: N = 397, OR = 1.5). This same allele was then found associated with cognitive (n = 369) and fMRI (n = 313) intermediate phenotypes associated with schizophrenia-working memory (Cohen's d = 0.35), global cognition or g (d = 0.18), and prefrontal inefficiency (d = 0.36) as measured by BOLD fMRI during a working memory task. Together, these preclinical and clinical results suggest that variation in NKCC1 may increase risk for schizophrenia via alterations of mRNA expression at the molecular level and impairment of optimal prefrontal function at the macro or systems level.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Prefrontal Cortex/metabolism , Schizophrenia/pathology , Solute Carrier Family 12, Member 2/metabolism , Adolescent , Adult , Aged , Child , Child, Preschool , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Cohort Studies , DNA, Recombinant , Female , Fetus , Genotype , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation/genetics , Oxygen/blood , Postmortem Changes , Prefrontal Cortex/blood supply , Prefrontal Cortex/embryology , Prefrontal Cortex/growth & development , Psychiatric Status Rating Scales , Solute Carrier Family 12, Member 2/genetics , Young Adult
17.
Biol Psychiatry ; 75(5): 406-13, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-23992923

ABSTRACT

BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) is the most common genetic syndrome associated with schizophrenia. The catechol-O-methyltransferase (COMT) gene is located in the obligatory deletion region, and possible associations between COMT variants and neuropsychiatric manifestations in 22q11.2DS have been reported. The purpose of the current study was to evaluate the effect of COMT hemizygosity and molecular haplotypes on gene expression and enzyme activity and its association with psychotic symptoms in 22q11.2DS. METHODS: Lymphoblast samples were drawn from 53 individuals with 22q11.2DS and 16 typically developing control subjects. We measured COMT messenger (m)RNA and protein expression and enzyme activity using standard procedures. The presence of a psychotic disorder and cognitive deficits were also evaluated using structured testing. RESULTS: There was an approximately 50% reduction in COMT mRNA, protein, and enzyme activity levels in 22q11.2DS samples. Haplotype analysis revealed clear phenotypic differences between various Val-containing haplotypes on COMT-3' untranslated region extended mRNA, soluble COMT and membrane-bound proteins, and enzyme activity. The G variant of rs165599, a 3' untranslated region single nucleotide polymorphism, was associated with low levels of COMT expression and with the presence of psychosis and lower performance IQ scores in our 22q11.2DS sample. Finally, we demonstrate that the COMT rs74745580 "T" mutation is associated with absent soluble COMT expression and very low COMT activity in two 22q11.2DS individuals. CONCLUSIONS: Our findings confirm a robust effect of COMT hemizygosity on COMT activity and show complex interactions of variants within the COMT gene that influence COMT biology and confound conclusions based on associations with the Val158Met genotype alone.


Subject(s)
Catechol O-Methyltransferase/genetics , DiGeorge Syndrome/complications , DiGeorge Syndrome/genetics , Genetic Predisposition to Disease , Psychotic Disorders/complications , Psychotic Disorders/genetics , Adolescent , Adult , Catechol O-Methyltransferase/metabolism , Chi-Square Distribution , Child , Chromosome Deletion , Female , Haplotypes , Humans , Male , Methionine/genetics , Psychiatric Status Rating Scales , Valine/genetics , Young Adult
18.
Biol Psychiatry ; 75(9): 693-700, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24290728

ABSTRACT

BACKGROUND: Episodic memory (EM) declines with age and the rate of decline is variable across individuals. A single nucleotide polymorphism (rs17070145) in the WWC1 gene that encodes the KIBRA protein critical for long-term potentiation and memory consolidation has previously been associated with EM performance, as well as differences in hippocampal engagement during EM tasks using functional magnetic resonance imaging (fMRI). In the current study, we explore the effect of this polymorphism on EM-related activity and cognitive performance across the adult life span using fMRI. METHODS: Two hundred thirty-two healthy, Caucasian subjects (18-89 years) completed a battery of cognitive tests, as well as an EM task during an fMRI scan. RESULTS: WWC1 T carriers had significantly better delayed recall performance than CC individuals (p = .006). The relationship between increasing age and recall scores (immediate and delayed) was also significantly different between WWC1 genotype groups (p = .01). In addition to the age-related decline in hippocampal formation (HF) activation (p < .05; false discovery ratesmall volume correction-HF-region of interest), we observed an age by WWC1 genotype interaction on HF activation during encoding and retrieval. The CC group showed a significant negative association between HF activity and increasing age, while no such association was observed in the T carrier group (left HF p = .04; r-z correlation difference during encoding and retrieval; right HF p = .0008; r-z correlation difference during retrieval). CONCLUSIONS: Our results show a dynamic relationship between rs17070145 polymorphism and increasing age on neuronal activity in the hippocampal region.


Subject(s)
Aging/genetics , Aging/physiology , Hippocampus/physiology , Intracellular Signaling Peptides and Proteins/genetics , Memory, Episodic , Phosphoproteins/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Brain/physiology , Brain Mapping , Genotype , Humans , Learning/physiology , Magnetic Resonance Imaging , Mental Recall , Middle Aged , Neuropsychological Tests , White People/genetics , Young Adult
19.
Neuropsychopharmacology ; 38(3): 525-32, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23132269

ABSTRACT

The BDNF Val(66)Met polymorphism, a possible risk variant for mental disorders, is a potent modulator of neural plasticity in humans and has been linked to deficits in gray matter structure, function, and cognition. The impact of the variant on brain white matter structure, however, is controversial and remains poorly understood. Here, we used diffusion tensor imaging to examine the effects of BDNF Val(66)Met genotype on white matter microstructure in a sample of 85 healthy Caucasian adults. We demonstrate decreases of fractional anisotropy and widespread increases in radial diffusivity in Val/Val homozygotes compared with Met-allele carriers, particularly in prefrontal and occipital pathways. These data provide an independent confirmation of prior imaging genetics work, are consistent with complex effects of the BDNF Val(66)Met polymorphism on human brain structure, and may serve to generate hypotheses about variation in white matter microstructure in mental disorders associated with this variant.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Methionine/genetics , Nerve Fibers, Myelinated/pathology , Polymorphism, Genetic/genetics , Valine/genetics , Adult , Anisotropy , Diffusion Magnetic Resonance Imaging/methods , Female , Homozygote , Humans , Male , Nerve Fibers, Myelinated/metabolism , Young Adult
20.
Arch Gen Psychiatry ; 69(8): 804-13, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22868934

ABSTRACT

CONTEXT: Although the apolipoprotein E (APOE) ϵ4 allele is a major genetic risk factor for late-onset Alzheimer disease, its effect on hippocampal function during episodic memory is controversial because studies have yielded mixed results. The age of the studied cohorts may contribute to this apparent inconsistency: activation for ϵ4 carriers tends to be increased in studies of older adults but decreased in some studies of younger adults. Consistent with differential age effects, research in transgenic mice suggests that the ϵ4 allele may particularly affect the aging process. OBJECTIVE: To define the interactions of age and this allelic variation on brain activation during episodic memory across adult life in healthy individuals. DESIGN: Functional magnetic resonance imaging (fMRI) using an episodic memory paradigm to test for differences in neuroactivation across APOE genotypes and age groups. SETTING: A federal research institute. PARTICIPANTS: Healthy white volunteers (APOE ϵ3 homozygotes and ϵ2 and ϵ4 heterozygotes) completed the fMRI task (133 volunteers aged 19-77 years). MAIN OUTCOME MEASURE: Memory-related regional blood oxygenation level-dependent (BOLD) activation. RESULTS: Genotype affected the pattern of change in hippocampal BOLD activation across the adult lifespan: older age was associated with decreased activation in ϵ2 carriers and, to a lesser extent, in ϵ3 homozygotes, but this pattern was not observed in ϵ4 carriers. Among young participants, ϵ4 carriers had less hippocampal activation compared with ϵ3 homozygotes despite similar task performance. CONCLUSIONS: The findings support the hypothesis that aging and APOE allele status have interacting effects on the neural substrate of episodic memory and lend clarification to disparities in the literature. The stepwise decrease in activation with age found among genotype groups resembles the order of susceptibility to Alzheimer disease, suggesting a compensatory neurobiological mechanism in older asymptomatic ϵ4 carriers.


Subject(s)
Alzheimer Disease , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Brain Mapping/methods , Hippocampus , Memory, Episodic , Adult , Age Factors , Aged , Aging/genetics , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Female , Genetic Carrier Screening , Genetic Predisposition to Disease , Hippocampus/metabolism , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...