Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Biotechnol ; 19(2): 91-98, 2018.
Article in English | MEDLINE | ID: mdl-29792142

ABSTRACT

BACKGROUND: The emergence of psychoactive designer drugs has significantly increased over the last few years. Customs officials are responsible for the control of products entering the European Union (EU) market. This control applies to chemicals in general, pharmaceutical products and medicines. Numerous products imported from non-EU countries, often declared as 'bath salts' or 'fertilizers', contain new psychoactive substance (NPS). REVIEW: These are not necessarily controlled under international law, but may be subject to monitoring in agreement with EU legislation. This situation imposes substantial challenges, for example, for the maintenance of spectral libraries used for their detection by designated laboratories. The chemical identification of new substances, with the use of powerful instrumentation, and the time needed for detailed analysis and interpretation of the results, demands considerable commitment. The EU Joint Research Centre endeavors to provide scientific support to EU Customs laboratories to facilitate rapid identification and characterisation of seized samples. In addition to analysing known NPS, several new chemical entities have also been identified. Frequently, these belong to NPS classes already notified to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) by the European Early- Warning System (EWS). CONCLUSION: The aim of this paper is to discuss the implementation of workflow mechanisms that are in place in order to facilitate the monitoring, communication and management of analytical data. The rapid dissemination of this information between control authorities strives to help protect EU citizens against the health risks posed by harmful substances.


Subject(s)
Biomedical Research/methods , European Union , Intersectoral Collaboration , Psychotropic Drugs/analysis , Biomedical Research/trends , Humans , Psychotropic Drugs/chemistry , Substance-Related Disorders/epidemiology , Substance-Related Disorders/prevention & control
2.
Forensic Sci Int ; 265: 107-15, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26874735

ABSTRACT

New psychoactive substances (NPS) are synthesized compounds that are not usually covered by European and/or international laws. With a slight alteration in the chemical structure of existing illegal substances registered in the European Union (EU), these NPS circumvent existing controls and are thus referred to as "legal highs". They are becoming increasingly available and can easily be purchased through both the internet and other means (smart shops). Thus, it is essential that the identification of NPS keeps up with this rapidly evolving market. In this case study, the Belgian Customs authorities apprehended a parcel, originating from China, containing two samples, declared as being "white pigments". For routine identification, the Belgian Customs Laboratory first analysed both samples by gas-chromatography mass-spectrometry and Fourier-Transform Infrared spectroscopy. The information obtained by these techniques is essential and can give an indication of the chemical structure of an unknown substance but not the complete identification of its structure. To bridge this gap, scientific and technical support is ensured by the Joint Research Centre (JRC) to the European Commission Directorate General for Taxation and Customs Unions (DG TAXUD) and the Customs Laboratory European Network (CLEN) through an Administrative Arrangement for fast recognition of NPS and identification of unknown chemicals. The samples were sent to the JRC for a complete characterization using advanced techniques and chemoinformatic tools. The aim of this study was also to encourage the development of a science-based policy driven approach on NPS. These samples were fully characterized and identified as 5F-AMB and PX-3 using (1)H and (13)C nuclear magnetic resonance (NMR), high-resolution tandem mass-spectrometry (HR-MS/MS) and Raman spectroscopy. A chemoinformatic platform was used to manage, unify analytical data from multiple techniques and instruments, and combine it with chemical and structural information.


Subject(s)
Psychotropic Drugs/analysis , Substance Abuse Detection/methods , Belgium , Crime/legislation & jurisprudence , Forensic Toxicology , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry
3.
J Chromatogr A ; 1029(1-2): 263-6, 2004 Mar 12.
Article in English | MEDLINE | ID: mdl-15032371

ABSTRACT

Two methods to estimate distribution coefficients (K) between air and poly(dimethylsiloxane) (PDMS) coating of solid-phase microextraction (SPME) fibers for eight low molecular polycyclic aromatic hydrocarbons (PAHs) there are presented. The PDMS phases were used for determination of the coefficients according to equilibrium theory with help of a developed static calibration system (SCS). Another way to estimate the coefficients is based on the use of a linear relationship between the logarithm of the coefficients (log K) and linear temperature-programmed retention indexes (LTPRI) of the compounds without necessity to calibrate. The log K values for both of methods ranged from 5.2 (naphthalene) to 8.9 (pyrene) at 22 degrees C. Relative standard deviation (R.S.D.) of log K for each compound determined by static calibration was no more than 5.3%. R.S.D. of retention times for LTPRI indices did not exceed 0.28% for repeated injection. All experiments were implemented on a GC-MS system.


Subject(s)
Air/analysis , Polycyclic Compounds/analysis , Polymers/chemistry , Calibration , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...