Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Appl Clin Med Phys ; 24(10): e14021, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37144947

ABSTRACT

PURPOSES: To report our experience in a prospective study of implementing a transperineal ultrasound system to monitor intra-fractional prostate motion for prostate stereotactic body radiotherapy (SBRT). MATERIAL AND METHODS: This IRB-approved prospective study included 23 prostate SBRT patients treated between 04/2016 and 11/2019 at our institution. The prescription doses were 36.25 Gy to the Low-Dose planning target volume (LD-PTV) and 40 Gy to the High-Dose PTV (HD-PTV) in five fractions with 3 mm planning margins. The transperineal ultrasound system was successfully used in 110 of the 115 fractions. For intra-fraction prostate motion, the real-time prostate displacements measured by ultrasound were exported for analysis. The percentage of time prostate movement exceeded a 2 mm threshold was calculated for each fraction of all patients. T-test was used for all statistical comparisons. RESULTS: Ultrasound image quality was adequate for prostate delineation and prostate motion tracking. The setup time for each fraction under ultrasound-guided prostate SBRT was 15.0 ± 4.9 min and the total treatment time per fraction was 31.8 ± 10.5 min. The presence of an ultrasound probe did not compromise the contouring of targets or critical structures. For intra-fraction motion, prostate movement exceeded 2 mm tolerance in 23 of 110 fractions for 11 of 23 patients. For all fractions, the mean percentage of time when the prostate moved more than 2 mm in any direction during each fraction was 7%, ranging from 0% to 62% of a fraction. CONCLUSION: Ultrasound-guided prostate SBRT is a good option for intra-fraction motion monitoring with clinically acceptable efficiency.


Subject(s)
Prostatic Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Male , Humans , Prostate/diagnostic imaging , Prostate/surgery , Radiosurgery/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery , Radiotherapy Planning, Computer-Assisted/methods , Prospective Studies , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
2.
J Appl Clin Med Phys ; 21(9): 124-133, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32677272

ABSTRACT

PURPOSE/OBJECTIVES: To report our experience of combining three approaches of an automatic plan integrity check (APIC), a standard plan documentation, and checklist methods to minimize errors in the treatment planning process. MATERIALS/METHODS: We developed APIC program and standardized plan documentation via scripting in the treatment planning system, with an enforce function of APIC usage. We used a checklist method to check for communication errors in patient charts (referred to as chart errors). Any errors in the plans and charts (referred to as the planning errors) discovered during the initial chart check by the therapists were reported to our institutional Workflow Enhancement (WE) system. Clinical Implementation of these three methods is a progressive process while the APIC was the major progress among the three methods. Thus, we chose to compared the total number of planning errors before (including data from 2013 to 2014) and after (including data from 2015 to 2018) APIC implementation. We assigned the severity of these errors into five categories: serious (S), near miss with safety net (NM), clinical interruption (CLI), minor impediment (MI), and bookkeeping (BK). The Mann-Whitney U test was used for statistical analysis. RESULTS: A total of 253 planning error forms, containing 272 errors, were submitted during the study period, representing an error rate of 3.8%, 3.1%, 2.1%, 0.8%, 1.9% and 1.3% of total number of plans in these years respectively. A marked reduction of planning error rate in the S and NM categories was statistically significant (P < 0.01): from 0.6% before APIC to 0.1% after APIC. The error rate for all categories was also significantly reduced (P < 0.01), from 3.4% before APIC and 1.5% per plan after APIC. CONCLUSION: With three combined methods, we reduced both the number and the severity of errors significantly in the process of treatment planning.


Subject(s)
Checklist , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Dosage
3.
J Patient Saf ; 16(3): e131-e135, 2020 09.
Article in English | MEDLINE | ID: mdl-27355277

ABSTRACT

PURPOSE: The purpose of this work was to evaluate measures of increased departmental workload in relation to the occurrence of physician-related errors and incidents reaching the patient in radiation oncology. MATERIALS AND METHODS: All data were collected for the year 2013. Errors were defined as forms received by our departmental process improvement team; of these forms, only those relating to physicians were included in the study. Incidents were defined as serious errors reaching the patient requiring appropriate action; these were reported through a separate system. Workload measures included patient volumes and physician schedules and were obtained through departmental records for daily and monthly data. Errors and incidents were analyzed for relation with measures of workload using logistic regression modeling. RESULTS: Ten incidents occurred in the year. The number of patients treated per day was a significant factor relating to incidents (P < 0.003). However, the fraction of department physicians off-duty and the ratio of patients to physicians were not found to be significant factors relating to incidents. Ninety-one physician-related errors were identified, and the ratio of patients to physicians (rolling average) was a significant factor relating to errors (P < 0.03). The number of patients and the fraction of physicians off-duty were not significant factors relating to errors.A rapid increase in patient treatment visits may be another factor leading to errors and incidents. All incidents and 58% of errors occurred in months where there was an increase in the average number of fields treated per day from the previous month; 6 of the 10 incidents occurred in August, which had the highest average increase at 26%. CONCLUSIONS: Increases in departmental workload, especially rapid changes, may lead to higher occurrence of errors and incidents in radiation oncology. When the department is busy, physician errors may be perpetuated owing to an overwhelmed departmental checks system, leading to incidents reaching the patient. Insights into workload and workflow will allow for the development of targeted approaches to preventing errors and incidents.


Subject(s)
Medical Errors/statistics & numerical data , Radiation Oncology/standards , Workload/standards , Female , Humans , Male , Physicians
4.
J Appl Clin Med Phys ; 20(8): 65-77, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31364798

ABSTRACT

PURPOSE: To assess three advanced radiation therapy treatment planning tools on the intensity-modulated radiation therapy (IMRT) quality and consistency when compared to the clinically approved plans, referred as manual plans, which were planned without using any of these advanced planning tools. MATERIALS AND METHODS: Three advanced radiation therapy treatment planning tools, including auto-planning, knowledge-based planning, and multiple criteria optimization, were assessed on 20 previously treated clinical cases. Three institutions participated in this study, each with expertise in one of these tools. The twenty cases were retrospectively selected from Cleveland Clinic, including five head-and-neck (HN) cases, five brain cases, five prostate with pelvic lymph nodes cases, and five spine cases. A set of general planning objectives and organs-at-risk (OAR) dose constraints for each disease site from Cleveland Clinic was shared with other two institutions. A total of 60 IMRT research plans (20 from each institution) were designed with the same beam configuration as in the respective manual plans. For each disease site, detailed isodoseline distributions and dose volume histograms for a randomly selected representative case were compared among the three research plans and manual plan. In addition, dosimetric endpoints of five cases for each site were compared. RESULTS: Compared to the manual plans, the research plans using advanced tools showed substantial improvement for the HN patient cases, including the maximum dose to the spinal cord and brainstem and mean dose to the parotid glands. For the brain, prostate, and spine cases, the four types of plans were comparable based on dosimetric endpoint comparisons. CONCLUSION: With minimal planner interventions, advanced treatment planning tools are clinically useful, producing a plan quality similarly to or better than manual plans, improving plan consistency. For difficult cases such as HN cancer, advanced planning tools can further reduce radiation doses to numerous OARs while delivering adequate dose to the tumor targets.


Subject(s)
Brain Neoplasms/radiotherapy , Head and Neck Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Spinal Neoplasms/radiotherapy , Humans , Male , Organs at Risk/radiation effects , Prognosis , Radiotherapy Dosage , Retrospective Studies
5.
J Appl Clin Med Phys ; 20(7): 39-47, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31270937

ABSTRACT

PURPOSE: The purposes of this work are to (a) investigate whether the use of auto-planning and multiple iterations improves quality of head and neck (HN) radiotherapy plans; (b) determine whether delivery methods such as step-and-shoot (SS) and volumetric modulated arc therapy (VMAT) impact plan quality; (c) report on the observations of plan quality predictions of a commercial feasibility tool. MATERIALS AND METHODS: Twenty HN cases were retrospectively selected from our clinical database for this study. The first ten plans were used to test setting up planning goals and other optimization parameters in the auto-planning module. Subsequently, the other ten plans were replanned with auto-planning using step-and-shoot (AP-SS) and VMAT (AP-VMAT) delivery methods. Dosimetric endpoints were compared between the clinical plans and the corresponding AP-SS and AP-VMAT plans. Finally, predicted dosimetric endpoints from a commercial program were assessed. RESULTS: All AP-SS and AP-VMAT plans met the clinical dose constraints. With auto-planning, the dose coverage of the low dose planning target volume (PTV) was improved while the dose coverage of the high dose PTV was maintained. Compared to the clinical plans, the doses to critical organs, such as the brainstem, parotid, larynx, esophagus, and oral cavity were significantly reduced in the AP-VMAT (P < 0.05); the AP-SS plans had similar homogeneity indices (HI) and conformality indices (CI) and the AP-VMAT plans had comparable HI and improved CI. Good agreement in dosimetric endpoints between predictions and AP-VMAT plans were observed in five of seven critical organs. CONCLUSION: With improved planning quality and efficiency, auto-planning module is an effective tool to enable planners to generate HN IMRT plans that are meeting institution specific planning protocols. DVH prediction is feasible in improving workflow and plan quality.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Radiotherapy Dosage , Retrospective Studies
6.
Int J Radiat Oncol Biol Phys ; 89(4): 765-72, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24685444

ABSTRACT

PURPOSE: To review the impact of a workflow enhancement (WE) team in reducing treatment errors that reach patients within radiation oncology. METHODS AND MATERIALS: It was determined that flaws in our workflow and processes resulted in errors reaching the patient. The process improvement team (PIT) was developed in 2010 to reduce errors and was later modified in 2012 into the current WE team. Workflow issues and solutions were discussed in PIT and WE team meetings. Due to tensions within PIT that resulted in employee dissatisfaction, there was a 6-month hiatus between the end of PIT and initiation of the renamed/redesigned WE team. In addition to the PIT/WE team forms, the department had separate incident forms to document treatment errors reaching the patient. These incident forms are rapidly reviewed and monitored by our departmental and institutional quality and safety groups, reflecting how seriously these forms are treated. The number of these incident forms was compared before and after instituting the WE team. RESULTS: When PIT was disbanded, a number of errors seemed to occur in succession, requiring reinstitution and redesign of this team, rebranded the WE team. Interestingly, the number of incident forms per patient visits did not change when comparing 6 months during the PIT, 6 months during the hiatus, and the first 6 months after instituting the WE team (P=.85). However, 6 to 12 months after instituting the WE team, the number of incident forms per patient visits decreased (P=.028). After the WE team, employee satisfaction and commitment to quality increased as demonstrated by Gallup surveys, suggesting a correlation to the WE team. CONCLUSIONS: A team focused on addressing workflow and improving processes can reduce the number of errors reaching the patient. Time is necessary before a reduction in errors reaching patients will be seen.


Subject(s)
Medical Errors/prevention & control , Patient Care Team/organization & administration , Patient Safety/standards , Quality Improvement/standards , Radiation Oncology/standards , Risk Management/statistics & numerical data , Workflow , Documentation/methods , Female , Humans , Job Satisfaction , Male , Medical Errors/statistics & numerical data , Medical Records , Quality Improvement/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL
...