Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(9): 3126-3135, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29412680

ABSTRACT

Realization of useful nanometer length scale devices in which metalloproteins are junction-confined in a distinct molecular arrangement for generating practical electronic signals (e.g., in bioelectronic switch configuration) is elusive till date. This is mostly due to difficulties in observing an electronically appropriate signal (i.e., reproducible and controllable), when studied under junction-assembled condition. A useful "ON"-"OFF" behavior, based on the negative differential resistance (NDR) peak characteristics in the current-voltage response curves, acquired using metal-insulator-metal (MIM) configuration, has been observed only in the case of a few proteins, namely, azurin, cytochrome c, bacteriorhodopsin, so far. The case of NDR in ferritin, an iron storage protein having a semiconducting iron core consisting of few thousands of iron atoms connected in an oxide network, has not been studied in the MIM configuration where single (or a few) molecule(s) are junction-trapped, for example, as in the case of local probe configuration of scanning probe microscopy. The present study by scanning tunneling microscopy (STM), using the naturally occurring iron-containing ferritin (human liver), as well as different iron-loaded ferritins, provides clear indication of the capability of ferritins to be NDR capable, at varying sweep conditions. As ferritin can be tailor-made in a structurally conserved manner, metal core-reconstituted ferritins, that is, Mn(III)-ferritin, Cu(II)-ferritin, and Ag-ferritin, were prepared. A correlation between the NDR peak signatures, as observed in the respective current-voltage response curves of these reconstituted ferritins, and the nature of the metal core is demonstrated. In support of our earlier proposition, here, we affirm that the ferritin protein behaves as a conductor-insulator (metal core-polypeptide shell) composite, where the overall electronic structure of the material can alter as a function of the nature of the conducting filler placed inside the insulated matrix.


Subject(s)
Ferritins/chemistry , Metalloproteins/metabolism , Humans , Iron/chemistry , Metalloproteins/chemistry , Microscopy, Scanning Tunneling
SELECTION OF CITATIONS
SEARCH DETAIL
...