Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nature ; 609(7927): 605-610, 2022 09.
Article in English | MEDLINE | ID: mdl-35768502

ABSTRACT

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Membrane Transport Proteins , Antiporters/metabolism , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Bicarbonates/metabolism , Bile Acids and Salts/metabolism , Binding Sites , Biological Transport , Herbicides/metabolism , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Phthalimides/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/metabolism , Proline/metabolism , Protein Domains , Protein Multimerization , Protons , Sodium/metabolism , Symporters/metabolism
2.
Nature ; 592(7856): 768-772, 2021 04.
Article in English | MEDLINE | ID: mdl-33828298

ABSTRACT

One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity1,2. So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery3-7; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the Escherichia coli tryptophan repressor8, the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors-as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors-our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant.


Subject(s)
Biosensing Techniques , Indoleacetic Acids/analysis , Arabidopsis , Binding Sites , Biological Transport , Escherichia coli Proteins , Fluorescence Resonance Energy Transfer , Gravitation , Plant Roots/metabolism , Plants, Genetically Modified , Protein Engineering , Protein Structure, Secondary , Repressor Proteins , Signal Transduction
3.
Plant Cell ; 33(6): 1945-1960, 2021 07 19.
Article in English | MEDLINE | ID: mdl-33751121

ABSTRACT

Angiosperms have evolved the phloem for the long-distance transport of metabolites. The complex process of phloem development involves genes that only occur in vascular plant lineages. For example, in Arabidopsis thaliana, the BREVIS RADIX (BRX) gene is required for continuous root protophloem differentiation, together with PROTEIN KINASE ASSOCIATED WITH BRX (PAX). BRX and its BRX-LIKE (BRXL) homologs are composed of four highly conserved domains including the signature tandem BRX domains that are separated by variable spacers. Nevertheless, BRX family proteins have functionally diverged. For instance, BRXL2 can only partially replace BRX in the root protophloem. This divergence is reflected in physiologically relevant differences in protein behavior, such as auxin-induced plasma membrane dissociation of BRX, which is not observed for BRXL2. Here we dissected the differential functions of BRX family proteins using a set of amino acid substitutions and domain swaps. Our data suggest that the plasma membrane-associated tandem BRX domains are both necessary and sufficient to convey the biological outputs of BRX function and therefore constitute an important regulatory entity. Moreover, PAX target phosphosites in the linker between the two BRX domains mediate the auxin-induced plasma membrane dissociation. Engineering these sites into BRXL2 renders this modified protein auxin-responsive and thereby increases its biological activity in the root protophloem context.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Female , Gene Expression Regulation, Plant , Multigene Family , Oocytes/metabolism , Plants, Genetically Modified , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Selaginellaceae/chemistry , Xenopus laevis
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443187

ABSTRACT

N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.


Subject(s)
Biological Transport, Active/drug effects , Indoleacetic Acids/metabolism , Phthalimides/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Animals , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport, Active/genetics , Dimerization , Mass Spectrometry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Oocytes/drug effects , Phosphorylation , Phthalimides/pharmacology , Plant Growth Regulators/antagonists & inhibitors , Plant Growth Regulators/genetics , Plant Proteins/genetics , Saccharomyces cerevisiae/metabolism , Nicotiana/drug effects , Nicotiana/metabolism , Xenopus
5.
Sci Rep ; 10(1): 13336, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770129

ABSTRACT

Efficient mRNA splicing is a prerequisite for protein biosynthesis and the eukaryotic splicing machinery is evolutionarily conserved among species of various phyla. At its catalytic core resides the activated splicing complex Bact consisting of the three small nuclear ribonucleoprotein complexes (snRNPs) U2, U5 and U6 and the so-called NineTeen complex (NTC) which is important for spliceosomal activation. CWC15 is an integral part of the NTC in humans and it is associated with the NTC in other species. Here we show the ubiquitous expression and developmental importance of the Arabidopsis ortholog of yeast CWC15. CWC15 associates with core components of the Arabidopsis NTC and its loss leads to inefficient splicing. Consistent with the central role of CWC15 in RNA splicing, cwc15 mutants are embryo lethal and additionally display strong defects in the female haploid phase. Interestingly, the haploid male gametophyte or pollen in Arabidopsis, on the other hand, can cope without functional CWC15, suggesting that developing pollen might be more tolerant to CWC15-mediated defects in splicing than either embryo or female gametophyte.


Subject(s)
Arabidopsis/genetics , Spliceosomes/genetics , Pollen/genetics , RNA Splicing/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
Dev Cell ; 52(2): 223-235.e5, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31866202

ABSTRACT

Cell polarity is a key feature in the development of multicellular organisms. For instance, asymmetrically localized plasma-membrane-integral PIN-FORMED (PIN) proteins direct transcellular fluxes of the phytohormone auxin that govern plant development. Fine-tuned auxin flux is important for root protophloem sieve element differentiation and requires the interacting plasma-membrane-associated BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX) proteins. We observed "donut-like" polar PIN localization in developing sieve elements that depends on complementary, "muffin-like" polar localization of BRX and PAX. Plasma membrane association and polarity of PAX, and indirectly BRX, largely depends on phosphatidylinositol-4,5-bisphosphate. Consistently, mutants in phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) display protophloem differentiation defects similar to brx mutants. The same PIP5Ks are in complex with BRX and display "muffin-like" polar localization. Our data suggest that the BRX-PAX module recruits PIP5Ks to reinforce PAX polarity and thereby the polarity of all three proteins, which is required to maintain a local PIN minimum.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Differentiation , Cell Membrane/metabolism , Cell Polarity , Gene Expression Regulation, Plant , Plant Roots/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Mutation , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Roots/genetics , Plant Roots/growth & development
7.
Proc Natl Acad Sci U S A ; 116(12): 5795-5804, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30833400

ABSTRACT

In flowering plants, the asymmetrical division of the zygote is the first hallmark of apical-basal polarity of the embryo and is controlled by a MAP kinase pathway that includes the MAPKKK YODA (YDA). In Arabidopsis, YDA is activated by the membrane-associated pseudokinase SHORT SUSPENSOR (SSP) through an unusual parent-of-origin effect: SSP transcripts accumulate specifically in sperm cells but are translationally silent. Only after fertilization is SSP protein transiently produced in the zygote, presumably from paternally inherited transcripts. SSP is a recently diverged, Brassicaceae-specific member of the BRASSINOSTEROID SIGNALING KINASE (BSK) family. BSK proteins typically play broadly overlapping roles as receptor-associated signaling partners in various receptor kinase pathways involved in growth and innate immunity. This raises two questions: How did a protein with generic function involved in signal relay acquire the property of a signal-like patterning cue, and how is the early patterning process activated in plants outside the Brassicaceae family, where SSP orthologs are absent? Here, we show that Arabidopsis BSK1 and BSK2, two close paralogs of SSP that are conserved in flowering plants, are involved in several YDA-dependent signaling events, including embryogenesis. However, the contribution of SSP to YDA activation in the early embryo does not overlap with the contributions of BSK1 and BSK2. The loss of an intramolecular regulatory interaction enables SSP to constitutively activate the YDA signaling pathway, and thus initiates apical-basal patterning as soon as SSP protein is translated after fertilization and without the necessity of invoking canonical receptor activation.


Subject(s)
Arabidopsis/physiology , Gene Expression Regulation, Developmental/physiology , Signal Transduction/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/metabolism , Flowers/physiology , Gene Expression Regulation, Plant/physiology , Protein Serine-Threonine Kinases/metabolism , Seeds/metabolism , Seeds/physiology , Zygote/metabolism , Zygote/physiology
8.
Proc Natl Acad Sci U S A ; 115(26): 6864-6869, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29899148

ABSTRACT

Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses.


Subject(s)
Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Gene Expression Regulation, Plant/physiology , Hypocotyl/growth & development , Indoleacetic Acids/metabolism , Methyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Hypocotyl/genetics , Methylation , Methyltransferases/genetics , Mutation
9.
Plant Reprod ; 28(3-4): 161-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26454832

ABSTRACT

KEY MESSAGE: The optical brightener SCRI Renaissance 2200 can be used as versatile dye to study various aspects of plant reproduction by confocal laser scanning microscopy. The study of sexual reproduction of plants has traditionally relied on light microscopy in combination with a variety of staining methods. Transgenic lines that label specific cell or tissue types with fluorescent proteins in combination with confocal laser scanning microscopy were an important development to visualize gametophyte development, the fertilization process, and to follow cell differentiation in the early embryo. Staining the cell perimeter to identify surrounding tissue is often a necessary prerequisite to put the fluorescent signal in the right context. Here, we present SCRI Renaissance 2200 (SR2200) as a versatile dye to study various aspects of plant reproduction ranging from pollen tube growth, guidance and reception to the early patterning process in the developing embryo of Arabidopsis thaliana. Furthermore, we demonstrate that SR2200 can be combined with a wide variety of fluorescent proteins. If spectral information can be recorded, even double labeling with dyes that have very similar emission spectra such as 4',6-diamidin-2-phenylindol (DAPI) is possible. The presented staining method can be a single, easy-to-use alternative for a range of other staining protocols commonly used for microscopic analyses in plant reproductive biology.


Subject(s)
Arabidopsis/anatomy & histology , Cell Wall/metabolism , Staining and Labeling/methods , Arabidopsis/physiology , Microscopy, Confocal , Reproduction
10.
Development ; 141(24): 4831-40, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25411212

ABSTRACT

In multicellular organisms, cellular differences in gene activity are a prerequisite for differentiation and establishment of cell types. In order to study transcriptome profiles, specific cell types have to be isolated from a given tissue or even the whole organism. However, whole-transcriptome analysis of early embryos in flowering plants has been hampered by their size and inaccessibility. Here, we describe the purification of nuclear RNA from early stage Arabidopsis thaliana embryos using fluorescence-activated nuclear sorting (FANS) to generate expression profiles of early stages of the whole embryo, the proembryo and the suspensor. We validated our datasets of differentially expressed candidate genes by promoter-reporter gene fusions and in situ hybridization. Our study revealed that different classes of genes with respect to biological processes and molecular functions are preferentially expressed either in the proembryo or in the suspensor. This method can be used especially for tissues with a limited cell population and inaccessible tissue types. Furthermore, we provide a valuable resource for research on Arabidopsis early embryogenesis.


Subject(s)
Arabidopsis/embryology , Cell Nucleus/chemistry , Gene Expression Profiling/methods , RNA, Nuclear/isolation & purification , Seeds/metabolism , Arabidopsis/metabolism , Cloning, Molecular , Genotype , In Situ Hybridization , Microarray Analysis , Microscopy, Fluorescence , Real-Time Polymerase Chain Reaction
11.
J Exp Bot ; 64(10): 3009-19, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23682118

ABSTRACT

In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored. For example, apart from auxin-linked regulatory inputs, factors regulating the expression of the AUX/IAA BODENLOS (BDL)/IAA12 are not known. Here, it was shown that the HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factor HOMEOBOX PROTEIN 5 (HB5) negatively regulates BDL expression, which may contribute to the spatial control of BDL expression. As such, HB5 and probably other class I HD-ZIP proteins, appear to modulate BDL-dependent auxin response.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Down-Regulation , Gene Expression Regulation, Plant , Homeodomain Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Indoleacetic Acids/metabolism , Leucine Zippers , Plant Growth Regulators/metabolism , Repressor Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics
12.
Nat Cell Biol ; 13(5): 611-5, 2011 May.
Article in English | MEDLINE | ID: mdl-21478855

ABSTRACT

Cell specification in development requires robust gene-regulatory responses to transient signals. In plants, the small signalling molecule auxin has been implicated in diverse developmental processes. Auxin promotes the degradation of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors that prevent AUXIN RESPONSE FACTOR (ARF) transcription factors from regulating their target genes. However, the precise role of auxin in patterning has remained unclear, the view of auxin acting as a morphogen is controversial and the transcriptional control of the ARF genes themselves is barely explored. Here, we demonstrate by experimental and computational analyses that the Arabidopsis ARF protein MONOPTEROS (MP) controls its own expression and the expression of its AUX/IAA inhibitor BODENLOS (BDL), with auxin acting as a threshold-specific trigger by promoting the degradation of the inhibitor. Our results suggest a general mechanism for how the transient accumulation of auxin activates self-sustaining or hysteretic feedback systems of interacting auxin-response proteins that, similarly to other genetic switches, result in unequivocal developmental responses.


Subject(s)
Arabidopsis/genetics , Indoleacetic Acids/metabolism , Genes, Plant
13.
Appl Environ Microbiol ; 76(3): 680-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19966017

ABSTRACT

Inducible expression is a valuable approach for the elucidation of gene functions. Here, we present new configurations of the tetracycline-dependent gene regulation (tet) system for Staphylococcus aureus. To provide improved and expanded modes of control, strains and plasmids were constructed for the constitutive expression of tetR or a variant allele, rev-tetR(r2). The encoded regulators respond differently to the effector anhydrotetracycline (ATc), which causes target gene expression to be induced with TetR or repressed with rev-TetR. To quantify and compare regulation mediated by episomal or chromosomal (rev-)tetR constructs, expression from a chromosomal P(xyl/tet)-gfpmut2 fusion was measured. Chromosomally encoded TetR showed tight repression and allowed high levels of dose-dependent gene expression in response to ATc. Regulatory abilities were further verified using a strain in which a native S. aureus gene (zwf) was put under tet control in its native chromosomal location. Tight repression was reflected by transcript amounts, which were barely detectable under repressed conditions and high in ATc-treated cells. In reporter gene assays, this type of control, termed Tet-on, was more efficient than Tet-off regulation, in which addition of ATc causes downregulation of a target gene. The latter was achieved and quantified by direct rev-TetR control of P(xyl/tet)-gfpmut2. Additionally, TetR was used in trans to control the expression of antisense RNA for posttranscriptional gene silencing. Induction of antisense RNA expression of the fabI gene caused pronounced growth retardation lasting several hours. These results demonstrate the efficiency of the new tet systems and their flexible use for different purposes.


Subject(s)
Gene Expression Regulation, Bacterial , Repressor Proteins/metabolism , Staphylococcus aureus/genetics , Tetracyclines/pharmacology , Alleles , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression/drug effects , Gene Expression Regulation, Bacterial/drug effects , Gene Silencing/drug effects , Genes, Reporter , Genetic Vectors , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Plasmids , Promoter Regions, Genetic , RNA, Antisense/genetics , Repressor Proteins/genetics , Staphylococcus aureus/metabolism , Tetracycline/pharmacology , Transcriptional Activation , Transduction, Genetic , Transfection
14.
J Mol Microbiol Biotechnol ; 17(3): 136-45, 2009.
Article in English | MEDLINE | ID: mdl-19622881

ABSTRACT

Tetracycline repressor (TetR) bears an unstructured loop region between helices alpha8 and alpha9, which is moderately permissive to amino acid exchanges and length variations. Recognition sites for the site-specific recombinases Flp (FRT) or Cre (lox) were inserted in-frame into tetR, substituting some of this loop's codons. A number of the deduced TetR variants displayed efficient regulation in vivo, thus allowing the establishment of a new mode of TetR activation on the genetic level. Chromosomally encoded tetR in Bacillus subtilis was disrupted and inactivated by insertion of a lox66-aphAIII-lox71 kanamycin resistance cassette. Marker excision by Cre recombinase led to the assembly of a novel tetR allele. The encoded regulator, termed TetR(lox72/1), is distinguished from wt-TetR by a slightly elongated and altered alpha8-alpha9 loop only, harboring an amino acid stretch encoded by lox72. Despite decreased intracellular protein amounts, TetR(lox72/1) displayed efficient in vivo activity in B. subtilis and E. coli, indistinguishable from that of wt-TetR. These results underline the sequence flexibility of TetR in the alpha8-alpha9 loop and demonstrate the possible use of the regulator as a read-out tool for the activity of site-specific recombinases.


Subject(s)
Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Integrases/metabolism , Recombination, Genetic , Repressor Proteins/biosynthesis , Tetracycline Resistance , Amino Acid Sequence , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , DNA Nucleotidyltransferases/metabolism , Escherichia coli/drug effects , Escherichia coli/physiology , Gene Knockout Techniques , Models, Molecular , Molecular Sequence Data , Mutagenesis, Insertional , Protein Structure, Tertiary
15.
Appl Environ Microbiol ; 74(5): 1316-23, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18165371

ABSTRACT

Allelic replacement in staphylococci is frequently aided by antibiotic resistance markers that replace the gene(s) of interest. In multiply modified strains, the number of mutated genes usually correlates with the number of selection markers in the strain's chromosome. Site-specific recombination systems are capable of eliminating such markers, if they are flanked by recombinase recognition sites. In this study, a Cre-lox setting was established that allowed the efficient removal of resistance genes from the genomes of Staphylococcus carnosus and S. aureus. Two cassettes conferring resistance to erythromycin or kanamycin were flanked with wild-type or mutant lox sites, respectively, and used to delete single genes and an entire operon. After transformation of the cells with a newly constructed cre expression plasmid (pRAB1), genomic eviction of the resistance genes was observed in approximately one out of ten candidates analyzed and subsequently verified by PCR. Due to its thermosensitive origin of replication, the plasmid was then easily eliminated at nonpermissive temperatures. We anticipate that the system presented here will prove useful for generating markerless deletion mutants in staphylococci.


Subject(s)
Drug Resistance, Microbial/genetics , Gene Deletion , Genetic Engineering/methods , Genetic Markers/genetics , Integrases/metabolism , Staphylococcus/genetics , Base Sequence , Genetic Vectors/genetics , Molecular Sequence Data , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...