Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 69(1): 91-108, 2021 01.
Article in English | MEDLINE | ID: mdl-32744761

ABSTRACT

In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners ß3 or ß8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.


Subject(s)
Schwann Cells , Animals , Axons , Integrin alphaV , Integrins , Mice , Oligopeptides
2.
J Neurosci ; 38(34): 7462-7475, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30061191

ABSTRACT

Cilia of olfactory sensory neurons (OSNs) are the primary site of odor binding; hence, their loss results in anosmia, a clinical manifestation of pleiotropic ciliopathies for which there are no curative therapies. We used OSN-specific Ift88 knock-out mice (Ift88osnKO) of both sexes to examine the mechanisms of ciliopathy-induced olfactory dysfunction and the potential for gene replacement to rescue odorant detection, restore olfactory circuitry, and restore odor-guided behaviors. Loss of OSN cilia in Ift88osnKO mice resulted in substantially reduced odor detection and odor-driven synaptic activity in the olfactory bulb (OB). Defects in OSN axon targeting to the OB were also observed in parallel with aberrant odor-guided behavior. Intranasal gene delivery of wild-type IFT88 to Ift88osnKO mice rescued OSN ciliation and peripheral olfactory function. Importantly, this recovery of sensory input in a limited number of mature OSNs was sufficient to restore axonal targeting in the OB of juvenile mice, and with delayed onset in adult mice. In addition, restoration of sensory input re-established course odor-guided behaviors. These findings highlight the spare capacity of the olfactory epithelium and the plasticity of primary synaptic input into the central olfactory system. The restoration of peripheral and central neuronal function supports the potential for treatment of ciliopathy-related anosmia using gene therapy.SIGNIFICANCE STATEMENT Ciliopathies, for which there are no curative therapies, are genetic disorders that alter cilia morphology and/or function in numerous tissue types, including the olfactory system, leading to sensory dysfunction. We show that in vivo intranasal gene delivery restores peripheral olfactory function in a ciliopathy mouse model, including axonal targeting in the juvenile and adult olfactory bulb. Gene therapy also demonstrated restoration of olfactory perception by rescuing odor-guided behaviors. Understanding the therapeutic window and viability for gene therapy to restore odor detection and perception may facilitate translation of therapies to ciliopathy patients with olfactory dysfunctions.


Subject(s)
Ciliopathies/therapy , Genetic Therapy , Olfaction Disorders/therapy , Olfactory Receptor Neurons/physiology , Tumor Suppressor Proteins/therapeutic use , Adenoviridae , Administration, Intranasal , Age Factors , Animals , Axons/physiology , Axons/ultrastructure , Cilia/ultrastructure , Female , Genes, Reporter , Genetic Vectors/administration & dosage , Male , Maze Learning , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Neurologic Mutants , Odorants , Olfactory Bulb/physiopathology , Olfactory Mucosa/pathology , Olfactory Perception/physiology , Olfactory Receptor Neurons/ultrastructure , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...