Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 11(1): 2140534, 2022.
Article in English | MEDLINE | ID: mdl-36387056

ABSTRACT

Solid tumors consist of malignant and nonmalignant cells that together create the local tumor microenvironment (TME). Additionally, the TME is characterized by the expression of numerous soluble factors such as TGF-ß. TGF-ß plays an important role in the TME by suppressing T cell effector function and promoting tumor invasiveness. Up to now CAR T cells exclusively target tumor-associated antigens (TAA) located on the cell membrane. Thus, strategies to exploit soluble antigens as CAR targets within the TME are needed. This study demonstrates a novel approach using Adapter CAR (AdCAR) T cells for the detection of soluble latent TGF-ß within the TME of a pancreatic tumor model. We show that AdCARs in combination with the respective adapter can be used to sense soluble tumor-derived latent TGF-ß, both in vitro and in vivo. Sensing of the soluble antigen induced cellular activation and effector cytokine production in AdCAR T cells. Moreover, we evaluated AdCAR T cells for the combined targeting of soluble latent TGF-ß and tumor cell killing by targeting CD66c as TAA in vivo. In sum, our study broadens the spectrum of targetable moieties for AdCAR T cells by soluble latent TGF-ß.


Subject(s)
Antigens, Neoplasm , Transforming Growth Factor beta , Transforming Growth Factor beta/metabolism , Oligonucleotides , Cell Membrane/metabolism , T-Lymphocytes
2.
Viruses ; 14(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-36298713

ABSTRACT

Selective gene delivery to a cell type of interest utilizing targeted lentiviral vectors (LVs) is an efficient and safe strategy for cell and gene therapy applications, including chimeric antigen receptor (CAR)-T cell therapy. LVs pseudotyped with measles virus envelope proteins (MV-LVs) have been retargeted by ablating binding to natural receptors while fusing to a single-chain antibody specific for the antigen of choice. However, the broad application of MV-LVs is hampered by the laborious LV engineering required for every new target. Here, we report the first versatile targeting system for MV-LVs that solely requires mixing with biotinylated adapter molecules to enable selective gene transfer. The analysis of the selectivity in mixed cell populations revealed transduction efficiencies below the detection limit in the absence of an adapter and up to 5000-fold on-to-off-target ratios. Flexibility was confirmed by transducing cell lines and primary cells applying seven different adapter specificities in total. Furthermore, adapter mixtures were applied to generate CAR-T cells with varying CD4/CD8-ratios in a single transduction step. In summary, a selective and flexible targeting system was established that may serve to improve the safety and efficacy of cellular therapies. Compatibility with a wide range of readily available biotinylated molecules provides an ideal technology for a variety of applications.


Subject(s)
Lentivirus , Receptors, Chimeric Antigen , Transduction, Genetic , Genetic Vectors/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Receptors, Chimeric Antigen/genetics , Genetic Therapy , Gene Transfer Techniques
3.
Mol Ther Methods Clin Dev ; 21: 42-53, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33768128

ABSTRACT

Recently, a rare type of relapse was reported upon treating a B cell acute lymphoblastic leukemia (B-ALL) patient with anti-CD19 chimeric antigen receptor (CAR)-T cells caused by unintentional transduction of residual malignant B cells (CAR-B cells). We show that anti-CD19 and anti-CD20 CARs are presented on the surface of lentiviral vectors (LVs), inducing specific binding to the respective antigen. Binding of anti-CD19 CAR-encoding LVs containing supernatant was reduced by CD19-specific blocking antibodies in a dose-dependent manner, and binding was absent for unspecific LV containing supernatant. This suggests that LVs bind via displayed CAR molecules to CAR antigen-expressing cells. The relevance for CAR-T cell manufacturing was evaluated when PBMCs and B-ALL malignant B cells were mixed and transduced with anti-CD19 or anti-CD20 CAR-displaying LVs in clinically relevant doses to mimic transduction conditions of unpurified patient leukapheresis samples. Malignant B cells were transduced at higher levels with LVs displaying anti-CD19 CARs compared to LVs displaying non-binding control constructs. Stability of gene transfer was confirmed by applying a potent LV inhibitor and long-term cultures for 10 days. Our findings provide a potential explanation for the emergence of CAR-B cells pointing to safer manufacturing procedures with reduced risk of this rare type of relapse in the future.

4.
Hum Gene Ther ; 28(10): 914-925, 2017 10.
Article in English | MEDLINE | ID: mdl-28847167

ABSTRACT

The clinical success of gene-engineered T cells expressing a chimeric antigen receptor (CAR), as manifested in several clinical trials for the treatment of B cell malignancies, warrants the development of a simple and robust manufacturing procedure capable of reducing to a minimum the challenges associated with its complexity. Conventional protocols comprise many open handling steps, are labor intensive, and are difficult to upscale for large numbers of patients. Furthermore, extensive training of personnel is required to avoid operator variations. An automated current Good Manufacturing Practice-compliant process has therefore been developed for the generation of gene-engineered T cells. Upon installation of the closed, single-use tubing set on the CliniMACS Prodigy™, sterile welding of the starting cell product, and sterile connection of the required reagents, T cells are magnetically enriched, stimulated, transduced using lentiviral vectors, expanded, and formulated. Starting from healthy donor (HD) or lymphoma or melanoma patient material (PM), the robustness and reproducibility of the manufacturing of anti-CD20 specific CAR T cells were verified. Independent of the starting material, operator, or device, the process consistently yielded a therapeutic dose of highly viable CAR T cells. Interestingly, the formulated product obtained with PM was comparable to that of HD with respect to cell composition, phenotype, and function, even though the starting material differed significantly. Potent antitumor reactivity of the produced anti-CD20 CAR T cells was shown in vitro as well as in vivo. In summary, the automated T cell transduction process meets the requirements for clinical manufacturing that the authors intend to use in two separate clinical trials for the treatment of melanoma and B cell lymphoma.


Subject(s)
Antigens, CD20/immunology , Cell Culture Techniques , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , Cell Line, Tumor , Cell Separation , Cytokines/metabolism , Cytotoxicity, Immunologic , Gene Expression , Humans , Immunophenotyping , Immunotherapy, Adoptive/methods , Phenotype , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets/metabolism , Transduction, Genetic , Transgenes
5.
Hum Gene Ther Clin Dev ; 25(4): 218-28, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25381930

ABSTRACT

The clinical application of self-inactivating (SIN) retroviral vectors requires an efficient vector production technology. To enable production of γ-retroviral SIN vectors from stable producer cells, new targetable HEK293-based producer clones were selected, providing amphotropic, GALV, or RD114 pseudotyping. Viral vector expression constructs can reliably be inserted at a predefined genomic locus via Flp-recombinase-mediated cassette exchange. Introduction of a clean-up step, mediated by Cre-recombinase, allows the removal of residual sequences that were required for targeting and selection, but were dispensable for the final producer clones and eliminated homology-driven recombination between the tagging and the therapeutic vector. The system was used to establish GALV and RD114 pseudotyping producer cells (HG- and HR820) for a clinically relevant long terminal repeat-driven therapeutic vector, designed for the transfer of a recombinant TCR that delivered titers in the range of 2×10(7) infectious particles (IP)/ml. Production capacity of the amphotropic producer cell (HA820) was challenged by a therapeutic SIN vector transferring the large COL7A1 cDNA. The final producer clone delivered a titer of 4×10(6) IP/ml and the vector containing supernatant was used directly to functionally restore primary fibroblasts and keratinocytes isolated from recessive dystrophic epidermolysis bullosa patients. Thus, the combinatorial approach (fc-technology) to generate producer cells for therapeutic γ-retroviral (SIN) vectors is feasible, is highly efficient, and allows their safe production and application in clinical trials.


Subject(s)
Collagen Type VII/genetics , DNA, Recombinant/genetics , Gammaretrovirus/genetics , Genetic Engineering/methods , Genetic Vectors/genetics , Collagen Type VII/metabolism , DNA, Recombinant/isolation & purification , Gammaretrovirus/metabolism , Gene Targeting/methods , Genetic Vectors/isolation & purification , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...