Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739784

ABSTRACT

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Subject(s)
Feathers , Mercury , Animals , Mercury/analysis , Atlantic Ocean , Feathers/chemistry , Arctic Regions , Greenland , Environmental Monitoring/methods , Birds , Food Chain , Water Pollutants, Chemical/analysis , Ecosystem
2.
Mov Ecol ; 12(1): 22, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520007

ABSTRACT

BACKGROUND: Migratory birds generally have tightly scheduled annual cycles, in which delays can have carry-over effects on the timing of later events, ultimately impacting reproductive output. Whether temporal carry-over effects are more pronounced among migrations over larger distances, with tighter schedules, is a largely unexplored question. METHODS: We tracked individual Arctic Skuas Stercorarius parasiticus, a long-distance migratory seabird, from eight breeding populations between Greenland and Siberia using light-level geolocators. We tested whether migration schedules among breeding populations differ as a function of their use of seven widely divergent wintering areas across the Atlantic Ocean, Mediterranean Sea and Indian Ocean. RESULTS: Breeding at higher latitudes led not only to later reproduction and migration, but also faster spring migration and shorter time between return to the breeding area and clutch initiation. Wintering area was consistent within individuals among years; and more distant areas were associated with more time spent on migration and less time in the wintering areas. Skuas adjusted the period spent in the wintering area, regardless of migration distance, which buffered the variation in timing of autumn migration. Choice of wintering area had only minor effects on timing of return at the breeding area and timing of breeding and these effects were not consistent between breeding populations. CONCLUSION: The lack of a consistent effect of wintering area on timing of return between breeding areas indicates that individuals synchronize their arrival with others in their population despite extensive individual differences in migration strategies.

3.
Environ Pollut ; 343: 123110, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38086506

ABSTRACT

Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.


Subject(s)
Charadriiformes , Mercury , Selenium , Trace Elements , Animals , Humans , Mercury/analysis , Carbon Isotopes , Arctic Regions , Environmental Monitoring
4.
Sci Total Environ ; 844: 156944, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35752241

ABSTRACT

Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.


Subject(s)
Mercury , Animals , Arctic Regions , Birds , Environmental Monitoring , Feathers/chemistry , Humans , Mercury/analysis
5.
Ambio ; 51(2): 345-354, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34751933

ABSTRACT

Climate change alters species distributions by shifting their fundamental niche in space through time. Such effects may be exacerbated by increased inter-specific competition if climate alters species dominance where competitor ranges overlap. This study used census data, telemetry and stable isotopes to examine the population and foraging ecology of a pair of Arctic and temperate congeners across an extensive zone of sympatry in Iceland, where sea temperatures varied substantially. The abundance of Arctic Brünnich's guillemot Uria lomvia declined with sea temperature. Accessibility of refugia in cold water currents or fjords helped support higher numbers and reduce rates of population decline. Competition with temperate Common guillemots Uria aalge did not affect abundance, but similarities in foraging ecology were sufficient to cause competition when resources are limiting. Continued warming is likely to lead to further declines of Brünnich's guillemot, with implications for conservation status and ecosystem services.


Subject(s)
Charadriiformes , Climate Change , Animals , Arctic Regions , Ecosystem , Estuaries , Ice , Ice Cover , Refugium
6.
Sci Rep ; 11(1): 22133, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764356

ABSTRACT

The rapidly changing climate in the Arctic is expected to have a major impact on the foraging ecology of seabirds, owing to changes in the distribution and abundance of their prey but also that of competitors (e.g. southerly species expanding their range into the Arctic). Species can respond to interspecific competition by segregating along different niche axes. Here, we studied spatial, temporal and habitat segregation between two closely related seabird species: common guillemot Uria aalge (a temperate species) and Brünnich's guillemot Uria lomvia (a true Arctic species), at two sympatric sites in Iceland that differ in their total population sizes and the availability of marine habitats. We deployed GPS and temperature-depth recorders to describe foraging locations and behaviour of incubating and chick-rearing adults. We found similar evidence of spatial segregation at the two sites (i.e. independent of population sizes), although segregation in environmental space was only evident at the site with a strong habitat gradient. Unexpectedly, temporal (and, to a limited extent, vertical) segregation appeared only at the least populated site. Overall, our results show complex relationships between the levels of inferred competition and that of segregation.

7.
Environ Int ; 146: 106178, 2021 01.
Article in English | MEDLINE | ID: mdl-33246245

ABSTRACT

A wide range of species, including marine mammals, seabirds, birds of prey, fish and bivalves, were investigated for potential population health risks resulting from contemporary (post 2000) mercury (Hg) exposure, using novel risk thresholds based on literature and de novo contamination data. The main geographic focus is on the Baltic Sea, while data from the same species in adjacent waters, such as the Greater North Sea and North Atlantic, were included for comparative purposes. For marine mammals, 23% of the groups, each composing individuals of a specific sex and maturity from the same species in a specific study region, showed Hg-concentrations within the High Risk Category (HRC) and Severe Risk Category (SRC). The corresponding percentages for seabirds, fish and bivalves were 2.7%, 25% and 8.0%, respectively, although fish and bivalves were not represented in the SRC. Juveniles from all species showed to be at no or low risk. In comparison to the same species in the adjacent waters, i.e. the Greater North Sea and the North Atlantic, the estimated risk for Baltic populations is not considerably higher. These findings suggest that over the past few decades the Baltic Sea has improved considerably with respect to presenting Hg exposure to its local species, while it does still carry a legacy of elevated Hg levels resulting from high neighbouring industrial and agricultural activity and slow water turnover regime.


Subject(s)
Bivalvia , Mercury , Animals , Animals, Wild , Fishes , Humans , Mercury/analysis , Mercury/toxicity , North Sea , Risk Assessment
8.
Sci Total Environ ; 750: 142201, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33182207

ABSTRACT

Mercury (Hg) is a natural trace element found in high concentrations in top predators, including Arctic seabirds. Most current knowledge about Hg concentrations in Arctic seabirds relates to exposure during the summer breeding period when researchers can easily access seabirds at colonies. However, the few studies focused on winter have shown higher Hg concentrations during the non-breeding period than breeding period in several tissues. Hence, improving knowledge about Hg exposure during the non-breeding period is crucial to understanding the threats and risks encountered by these species year-round. We used feathers of nine migratory alcid species occurring at high latitudes to study bird Hg exposure during both the breeding and non-breeding periods. Overall, Hg concentrations during the non-breeding period were ~3 times higher than during the breeding period. In addition, spatial differences were apparent within and between the Atlantic and Pacific regions. While Hg concentrations during the non-breeding period were ~9 times and ~3 times higher than during the breeding period for the West and East Atlantic respectively, Hg concentrations in the Pacific during the non-breeding period were only ~1.7 times higher than during the breeding period. In addition, individual Hg concentrations during the non-breeding period for most of the seabird colonies were above 5 µg g-1 dry weight (dw), which is considered to be the threshold at which deleterious effects are observed, suggesting that some breeding populations might be vulnerable to non-breeding Hg exposure. Since wintering area locations, and migration routes may influence seasonal Hg concentrations, it is crucial to improve our knowledge about spatial ecotoxicology to fully understand the risks associated with Hg contamination in Arctic seabirds.


Subject(s)
Mercury , Animals , Arctic Regions , Birds , Environmental Monitoring , Feathers/chemistry , Mercury/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...