Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 159(1-4): 182-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24748487

ABSTRACT

Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogenously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Image Processing, Computer-Assisted , Radiation Dosage , Radiometry/methods , Thiones/radiation effects , Humans , Mathematics , Thiones/chemistry
2.
Radiat Prot Dosimetry ; 159(1-4): 130-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24757173

ABSTRACT

A one-dimensional electron paramagnetic resonance (EPR) imaging method for visualisation of dose distributions in photon fields has been developed. Pressed pellets of potassium dithionate were homogeneously irradiated in a (60)Co radiation field to 600 Gy. The EPR analysis was performed with an X-Band (9.6 GHz) Bruker E540 EPR and EPR imaging spectrometer equipped with an E540 GC2X two-axis X-band gradient coil set with gradients along the y axis (along the sample tube) and z axis (along B0) and an ER 4108TMHS resonator. Image reconstruction, including deconvolution, baseline corrections and corrections for the resonator sensitivity, was performed using an in-house-developed Matlab code for the purpose to have a transparent and complete algorithm for image reconstruction. With this method, it is possible to visualise a dose distribution with an accuracy of ∼5 % within ±5 mm from the centre of the resonator.


Subject(s)
Brachytherapy , Cobalt Radioisotopes , Electron Spin Resonance Spectroscopy/methods , Image Enhancement/methods , Radiometry/methods , Thiones/radiation effects , Humans , Radiation Dosage , Thiones/chemistry
3.
Med Phys ; 37(10): 5448-55, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21089781

ABSTRACT

PURPOSE: The experimental determination of doses at proximal distances from radioactive sources is difficult because of the steepness of the dose gradient. The goal of this study was to determine the relative radial dose distribution for a low dose rate 192Ir wire source using electron paramagnetic resonance imaging (EPRI) and to compare the results to those obtained using Gafchromic EBT film dosimetry and Monte Carlo (MC) simulations. METHODS: Lithium formate and ammonium formate were chosen as the EPR dosimetric materials and were used to form cylindrical phantoms. The dose distribution of the stable radiation-induced free radicals in the lithium formate and ammonium formate phantoms was assessed by EPRI. EBT films were also inserted inside in ammonium formate phantoms for comparison. MC simulation was performed using the MCNP4C2 software code. RESULTS: The radical signal in irradiated ammonium formate is contained in a single narrow EPR line, with an EPR peak-to-peak linewidth narrower than that of lithium formate (approximately 0.64 and 1.4 mT, respectively). The spatial resolution of EPR images was enhanced by a factor of 2.3 using ammonium formate compared to lithium formate because its linewidth is about 0.75 mT narrower than that of lithium formate. The EPRI results were consistent to within 1% with those of Gafchromic EBT films and MC simulations at distances from 1.0 to 2.9 mm. The radial dose values obtained by EPRI were about 4% lower at distances from 2.9 to 4.0 mm than those determined by MC simulation and EBT film dosimetry. CONCLUSIONS: Ammonium formate is a suitable material under certain conditions for use in brachytherapy dosimetry using EPRI. In this study, the authors demonstrated that the EPRI technique allows the estimation of the relative radial dose distribution at short distances for a 192Ir wire source.


Subject(s)
Brachytherapy/statistics & numerical data , Iridium Radioisotopes/therapeutic use , Biophysical Phenomena , Electron Spin Resonance Spectroscopy/statistics & numerical data , Film Dosimetry/statistics & numerical data , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Iridium Radioisotopes/administration & dosage , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...