Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 123(41): 10063-70, 2001 Oct 17.
Article in English | MEDLINE | ID: mdl-11592885

ABSTRACT

The 1H and 13C chemical shifts for the heme methyls of low-spin, ferric sperm whale cyanometmyoglobin reconstituted with a variety of centrosymmetric and pseudocentrosymmetric hemins have been recorded and analyzed to shed light on the nature of heme-protein contacts, other than that of the axial His, that modulate the rhombic perturbation to the heme's in-plane electronic asymmetry. The very similar 1H dipolar shifts for heme pocket residues in all complexes yield essentially the same magnetic axes as in wild type, and the resultant dipolar shifts allow the direct determination of the heme methyl proton and 13C contact shifts in all complexes. It is demonstrated that, even when the magnetic axes and anisotropies are known, the intrinsic uncertainties in the orientational parameters lead to a sufficiently large uncertainty in dipolar shift that the methyl proton contact shifts are inherently significantly less reliable indicators of the unpaired electron spin distribution than the methyl 13C contact shifts. The pattern of the noninversion symmetry in 13C contact shifts in the centro- or pseudocentrosymmetric hemes is shown to correlate with the positions of aromatic rings of Phe43(CD1) and His97(FG3) parallel to, and in contact with, the heme. These results indicate that such pi-pi interactions significantly perturb the in-plane asymmetry of the heme pi spin distribution and cannot be ignored in a quantitative interpretation of the heme methyl 13C contact shifts in terms of the axial His orientation in b-type hemoproteins.


Subject(s)
Hemin/analogs & derivatives , Metmyoglobin/analogs & derivatives , Metmyoglobin/chemistry , Animals , Carbon Isotopes , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Protons , Whales
2.
J Am Chem Soc ; 123(18): 4266-74, 2001 May 09.
Article in English | MEDLINE | ID: mdl-11457193

ABSTRACT

Solution 1H NMR has been used to investigate the axial bonding of the proximal His and the hydrogen-bonding of the distal His to the bound ligand in the isolated chains as well as the subunits of intact, tetrameric, cyanomet human hemoglobin A. The complete proximal His, including all ring protons necessary to monitor bonding in each subunit, could be definitively assigned by 1D/2D methods despite the large size (approximately 65 kDa) and severe relaxation (to T(1) approximately 3 ms, line width approximately 1.5 kHz) of two of the protons. The complete distal His E7 ring was assigned in the alpha-chain and alpha-subunit of HbA, and the dipolar shifts and relaxation were analyzed to reveal a disposition intermediate between the positions adopted in HbCO and HbO2 that is optimal for forming a hydrogen bond with bound cyanide. The lability of the alpha-subunit His E7 NepsilonH is found to be similar to that in sperm whale cyanomet myoglobin. The orientation of the distal His E7 in the beta-subunit is found to be consistent with that seen in either HbCO or HbO2. While the His E7 labile NepsilonH proton signal could not be detected in either the beta-chain or subunit, it is concluded that this more likely reflects increased lability over that of the alpha-subunit, and not the absence of a hydrogen bond to the bound ligand. Analysis of the heme mean methyl hyperfine shift, which has been shown to be very sensitive to the presence of distal hydrogen bonds to bound cyanide (Nguyen, B. D.; Xia, Z.; Cutruzzolá, F.; Travaglini Allocatelli, C.; Brancaccio, A.; Brunori, M.; La Mar, G. N. J. Biol. Chem. 2000, 275, 742-751), directly supports the presence of a distal His E7 hydrogen bond to cyanide in the beta-chain and beta-subunit which is weaker than the same hydrogen bond in the alpha-subunit. The potential for the proximal His hyperfine shifts in serving as indicators of axial strain in the allosteric transition of HbA is discussed.


Subject(s)
Hemoglobin A/chemistry , Histidine/chemistry , Methemoglobin/chemistry , Electromagnetic Fields , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Methemoglobin/analogs & derivatives , Models, Molecular , Protein Conformation
3.
Biochemistry ; 40(24): 7069-76, 2001 Jun 19.
Article in English | MEDLINE | ID: mdl-11401551

ABSTRACT

The interaction of yeast iso-1-cytochrome c with its physiological redox partner cytochrome c peroxidase has been investigated using heteronuclear NMR techniques. Chemical shift perturbations for both 15N and 1H nuclei arising from the interaction of isotopically enriched 15N cytochrome c with cytochrome c peroxidase have been observed. For the diamagnetic, ferrous cytochrome c, 34 amides are affected by binding, corresponding to residues at the front face of the protein and in agreement with the interface observed in the 1:1 crystal structure of the complex. In contrast, for the paramagnetic, ferric protein, 56 amides are affected, corresponding to residues both at the front and toward the rear of the protein. In addition, the chemical shift perturbations were larger for the ferric protein. Using experimentally observed pseudocontact shifts the magnetic susceptibility tensor of yeast iso-1-cytochrome c in both the free and bound forms has been calculated with HN nuclei as inputs. In contrast to an earlier study, the results indicate that there is no change in the geometry of the magnetic axes for cytochrome c upon binding to cytochrome c peroxidase. This leads us to conclude that the additional effects observed for the ferric protein arise either from a difference in binding mode or from the more flexible overall structure causing a transmittance effect upon binding.


Subject(s)
Cytochrome c Group/chemistry , Cytochrome-c Peroxidase/chemistry , Cytochromes c , Saccharomyces cerevisiae Proteins , Binding Sites , Cytochrome c Group/metabolism , Cytochrome-c Peroxidase/metabolism , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Isoenzymes/chemistry , Isoenzymes/metabolism , Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular/methods , Oxidation-Reduction , Protons , Saccharomyces cerevisiae/enzymology , Thermodynamics
4.
Faraday Discuss ; (116): 205-20; discussion 257-68, 2000.
Article in English | MEDLINE | ID: mdl-11197479

ABSTRACT

A study of the structure and redox properties of the copper site in azurins by means of EXAFS, NMR, redox titrations, potentiometry, equilibrium cyclic voltammetry and rapid scan voltammetry on protein films is reported. The results are discussed in light of existing theories on structure and function of type-1 copper sites. The exit and entry of electrons take place through the C-terminal histidine ligand of the copper. The hydrophobic patch through which this residue penetrates the protein surface plays an important role in partner docking (cf. The rim of the porphyrin ring sticking through the surface of the cytochromes-c). We find no experimental evidence for strain around the metal site. The active centre is able to maintain ET activity even in the presence of fairly gross disturbances of the site structure. The analysis of the thermodynamics of the redox reaction shows that the protein matrix and the solvent play an important role in 'tuning' the redox potential around a "design" value of around 300 mV at room temperature. The metal site appears "designed" to stabilise the Cu(II) instead of the Cu(I) form. The remarkable evolutionary success of the blue copper proteins is ascribed to the sturdy overall beta-sandwich structure of the protein in combination with a metal site that is structurally adaptable because three of its four ligands are located on a loop. The electronic "gate" that occurs in the middle of a hydrophobic patch allows for fine tuning of the docking patch for recognition purposes.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Ligands , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Protein Conformation , Pseudomonas aeruginosa/metabolism
5.
Biospectroscopy ; 5(5 Suppl): S19-32, 1999.
Article in English | MEDLINE | ID: mdl-10512535

ABSTRACT

1H- and 13C-NMR spectroscopy is applied to investigate the CU(A) and type 1 active sites of copper proteins in solution. The analysis of hyperfine shifted 1H resonances allows the comparison of the electron spin density delocalization in the CU(A) site of the wild-type soluble domains of various cytochrome c oxidases (Thermus thermophilus, Paracoccus denitrificans, and Paracoccus versutus) and genetically engineered constructs (soluble domain of quinol oxidase from Escherichia coli and Thiobacillus versutus amicyanin). Comparable spin densities are found on the two terminal His ligands for the wild-type constructs as opposed to the engineered proteins where the spin is more unevenly distributed on the two His residues. A reevaluation of the Cys H(beta) chemical shifts that is in agreement with the data published for both the P. denitrificans and the P. versutus Cu(A) soluble domains confirms the thermal accessibility of the 2B(3u) electronic excited state and indicates the existence of slightly different spin densities on the two bridging Cys ligands. The 13C-NMR spectrum of isotopically enriched oxidized azurin from Pseudomonas aeruginosa reveals six fast relaxing signals, which can be partially identified by 1- and 2-dimensional (1-D, 2-D) direct detection techniques combined with 3-D triple resonance experiments. The observed contact shifts suggest the presence of direct spin density transfer and spin polarization mechanisms for the delocalization of the unpaired electron.


Subject(s)
Bacterial Proteins/chemistry , Copper/chemistry , Magnetic Resonance Spectroscopy , Metalloproteins/chemistry , Azurin/chemistry , Carbon Isotopes , Electron Spin Resonance Spectroscopy , Electron Transport , Electron Transport Complex IV/chemistry , Escherichia coli/enzymology , Histidine/chemistry , Hydrogen , Mutagenesis, Site-Directed , Oxidoreductases/chemistry , Oxidoreductases/genetics , Paracoccus/enzymology , Pseudomonas aeruginosa/chemistry , Recombinant Fusion Proteins/chemistry , Thermus thermophilus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...