Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 98(6): 1099-1115.e8, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29887338

ABSTRACT

Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning.


Subject(s)
Brain-Computer Interfaces , Motor Cortex/physiology , Neural Networks, Computer , Prefrontal Cortex/physiology , Spatial Navigation/physiology , Unsupervised Machine Learning , Animals , Macaca mulatta , Mice , Principal Component Analysis , Time Factors
2.
IEEE/ACM Trans Comput Biol Bioinform ; 14(6): 1446-1458, 2017.
Article in English | MEDLINE | ID: mdl-27483461

ABSTRACT

Network alignment has extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provides a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we identify a closely related surrogate function whose maximization results in a tensor eigenvector problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. Using a case study on the NAPAbench dataset, we show that triangular alignment is capable of producing mappings with high node correctness. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods in terms of conserved triangles. In addition, we show that the number of conserved triangles is more significantly correlated, compared to the conserved edge, with node correctness and co-expression of edges. Our formulation and resulting algorithms can be easily extended to arbitrary motifs.


Subject(s)
Algorithms , Computational Biology/methods , Protein Interaction Mapping/methods , Sequence Alignment/methods , Gene Expression Profiling , Humans , Yeasts/genetics , Yeasts/metabolism
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056109, 2012 May.
Article in English | MEDLINE | ID: mdl-23004823

ABSTRACT

Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdos-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdos-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...