Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0305906, 2024.
Article in English | MEDLINE | ID: mdl-38905201

ABSTRACT

Uric acid induces radical oxygen species formation, endothelial inflammation, and endothelial dysfunction which contributes to the progression of atherosclerosis. Febuxostat inhibits BCRP- and allopurinol stimulates MRP4-mediated uric acid efflux in human embryonic kidney cells. We hypothesized that endothelial cells express uric acid transporters that regulate intracellular uric acid concentration and that modulation of these transporters by febuxostat and allopurinol contributes to their different impact on cardiovascular mortality. The aim of this study was to explore a potential difference between the effect of febuxostat and allopurinol on uric acid uptake by human umbilical vein endothelial cells. Febuxostat increased intracellular uric acid concentrations compared with control. In contrast, allopurinol did not affect intracellular uric acid concentration. In line with this observation, febuxostat increased mRNA expression of GLUT9 and reduced MRP4 expression, while allopurinol did not affect mRNA expression of these uric acid transporters. These findings provide a possible pathophysiological pathway which could explain the higher cardiovascular mortality for febuxostat compared to allopurinol but should be explored further.


Subject(s)
Allopurinol , Febuxostat , Glucose Transport Proteins, Facilitative , Human Umbilical Vein Endothelial Cells , Multidrug Resistance-Associated Proteins , Uric Acid , Humans , Allopurinol/pharmacology , Febuxostat/pharmacology , Uric Acid/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics , Biological Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...