Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 71: 103187, 2023 09.
Article in English | MEDLINE | ID: mdl-37643496

ABSTRACT

Here, we present newly derived in vitro model for modeling Duchenne muscular dystrophy. Our new cell line was derived by reprogramming of peripheral blood mononuclear cells (isolated from blood from pediatric patient) with Sendai virus encoding Yamanaka factors. Derived iPS cells are capable to differentiate in vitro into three germ layers as verified by immunocytochemistry. When differentiated in special medium, our iPSc formed spontaneously beating cardiomyocytes. As cardiomyopathy is the main clinical complication in patients with Duchenne muscular dystrophy, the cell line bearing the dystrophin gene mutation might be of interest to the research community.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne , Humans , Child , Leukocytes, Mononuclear , Cell Differentiation , Cell Line
2.
Gen Physiol Biophys ; 28(1): 8-15, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19390132

ABSTRACT

The Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive disorder associated with multiple developmental malformations, is caused by a large spectrum of mutations in the DHCR7 gene. Mutations in the DHCR7 gene lead to a 7-dehydrocholesterol reductase deficiency, which is the final enzyme in the pathway of the cholesterol biosynthesis. Reduced cholesterol levels and elevated concentrations of its precursor 7-dehydrocholesterol in plasma and tissues are the major biochemical hallmarks of this disorder. In all patients a biochemical analysis of blood sterols using the gas chromatography/mass spectrometry was performed to confirm the clinical diagnosis of SLOS. We have also determined the mutational spectrum of DHCR7 gene in 17 Slovak patients. We identified six different mutations: nonsense mutation W151X and missense mutations V326L, L109P, G410S, R352Q, Y432C. Mutations W151X and V326L accounted for 76% of the SLOS alleles in Slovak population. The Slovak mutational spectrum is similar to that observed in other Central European countries. We also report simple polymerase chain reaction (PCR)-based assays that allow efficient and rapid mutation analysis.


Subject(s)
Codon, Nonsense , Mutation, Missense , Oxidoreductases Acting on CH-CH Group Donors/genetics , Smith-Lemli-Opitz Syndrome/genetics , Adolescent , Child , Child, Preschool , Cholesterol/blood , DNA Mutational Analysis/methods , Female , Gene Frequency , Humans , Infant , Infant, Newborn , Male , Polymerase Chain Reaction/methods , Slovakia
SELECTION OF CITATIONS
SEARCH DETAIL
...