Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124659, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38943759

ABSTRACT

The present study explores the kitchen waste okra peels derived synthesis of nitrogen doped carbon dots (N-CDs) via simple carbonization followed by reflux method. The synthesized N-CDs was characterized using, TEM, XPS, FTIR, XRD, Raman, UV-Visible and Fluorescence Spectroscopy. The N-CDs emits bright blue emission at 420 nm with 12 % of quantum yield as well as it follows excitation dependent emission. Further, the N-CDs were employed as a fluorescence sensor for detection of hazardous metal ions and nitro compounds. Among various metal ions and nitro compounds, the N-CDs shows fluorescence quenching response towards Cr6+, and Mn7+ metal ions as well as 4-nitroaniline (4-NA) and picric acid (PA) with significant hypsochromic and bathochromic shift for Mn7+, 4-NA and PA respectively. The developed fluorescent probe shows relatively low limit of detection (LOD) of 1.46 µg/mL, 1.05 µg/mL, 2.1 µg/mL and 2.2 µg/mL for the above analytes respectively. The N-CDs did not show any significant interference with coexisting ions and successfully applied for real water sample analysis. In addition, circular economy approach was employed for adsorption of dyes by reactivating leftover waste carbon residue which was obtained after reflux. Thus, the kitchen waste valorization and circular economy approach based N-CDs have potential applications in the field of detection of emerging pollutants, and environmental remediation.

2.
RSC Adv ; 14(5): 3473-3479, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38260000

ABSTRACT

In this work, we used a one-step hydrothermal method to synthesize blue-emission sulfur-doped carbon dots (S-CDs) using jaggery as a carbon precursor. The synthesized carbon quantum dots showed low toxicity, good water solubility, anti-interference properties, and stable fluorescence. When excited at 310 nm, the S-CDs produced bright emission with a quantum yield of 7.15% at 397 nm. The S-CDs exhibited selective and sensitive quenching responses with limits of detection (LODs) of 4.25 µg mL-1 and 3.15 µg mL-1 for variable concentrations of Cr6+ and Fe3+, respectively, accompanied by a consistent linear relationship between fluorescence intensity and these concentrations. Fluorescence lifetime measurements were used to investigate the fluorescence quenching mechanism, which supports the static type of quenching. Outstanding benefits of the developed S-CD based fluorescence probe include its low cost, excellent sensitivity and selectivity, and ease of use for the detection of Cr6+ and Fe3+ ions. The developed carbon dot based fluorescent probe was successfully used to detect Cr6+ and Fe3+ ions in real water samples with an excellent recovery ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...