Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Pharmaceutics ; 15(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36986746

ABSTRACT

Broad availability and cost-effectiveness of 99Mo/99mTc generators worldwide support the use, and thus the development, of novel 99mTc-labelled radiopharmaceuticals. In recent years, preclinical and clinical developments for neuroendocrine neoplasms patient management focused on somatostatin receptor subtype 2 (SST2) antagonists, mainly due to their superiority in SST2-tumour targeting and improved diagnostic sensitivity over agonists. The goal of this work was to provide a reliable method for facile preparation of a 99mTc-labelled SST2 antagonist, [99mTc]Tc-TECANT-1, in a hospital radiopharmacy setting, suitable for a multi-centre clinical trial. To ensure successful and reproducible on-site preparation of the radiopharmaceutical for human use shortly before administration, a freeze-dried three-vial kit was developed. The final composition of the kit was established based on the radiolabelling results obtained during the optimisation process, in which variables such as precursor content, pH and buffer, as well as kit formulations, were tested. Finally, the prepared GMP-grade batches met all predefined specification parameters together with long-term kit stability and stability of the product [99mTc]Tc-TECANT-1. Furthermore, the selected precursor content complies with micro-dosing, based on an extended single-dose toxicity study, where histopathology NOEL was established at 0.5 mg/kg BW, being more than 1000 times higher than the planned human dose of 20 µg. In conclusion, [99mTc]Tc-TECANT-1 is suitable to be advanced into a first-in-human clinical trial.

3.
Eur J Nucl Med Mol Imaging ; 50(3): 892-907, 2023 02.
Article in English | MEDLINE | ID: mdl-36334104

ABSTRACT

INTRODUCTION: Medullary thyroid cancer (MTC) is a rare malignant tumour of the parafollicular C-cells with an unpredictable clinical course and currently suboptimal diagnostic and therapeutic options, in particular in advanced disease. Overexpression of cholecystokinin-2 receptors (CCK2R) represents a promising avenue to diagnostic imaging and targeted therapy, ideally through a theranostic approach. MATERIALS AND METHODS: A translational study (GRAN-T-MTC) conducted through a Phase I multicentre clinical trial of the indium-111 labelled CP04 ([111In]In-CP04), a CCK2R-seeking ligand was initiated with the goal of developing a theranostic compound. Patients with proven advanced/metastatic MTC or short calcitonin doubling time were enrolled. A two-step concept was developed through the use of low- and high-peptide mass (10 and 50 µg, respectively) for safety assessment, with the higher peptide mass considered appropriate for therapeutic application. Gelofusine was co-infused in a randomized fashion in the second step for the evaluation of potential reduction of the absorbed dose to the kidneys. Imaging for the purpose of biodistribution, dosimetry evaluation, and diagnostic assessment were performed as well as pre-, peri-, and postprocedural clinical and biochemical assessment. RESULTS: Sixteen patients were enrolled. No serious adverse events after application of the compound at both peptide amounts were witnessed; transient tachycardia and flushing were observed in two patients. No changes in biochemistry and clinical status were observed on follow-up. Preliminary dosimetry assessment revealed the highest dose to urinary bladder, followed by the kidneys and stomach wall. The effective dose for 200 MBq of [111In]In-CP04 was estimated at 7±3 mSv and 7±1 mSv for 10 µg and 50 µg CP04, respectively. Administration of Gelofusine reduced the dose to the kidneys by 53%, resulting in the organ absorbed dose of 0.044±0.019 mSv/MBq. Projected absorbed dose to the kidneys with the use of [177Lu]Lu-CP04 was estimated at 0.9±0.4 Gy/7.4 GBq. [111In]In-CP04 scintigraphy was positive in 13 patients (detection rate of 81%) with superior diagnostic performance over conventional imaging. CONCLUSION: In the present study, [111In]In-CP04 was shown to be a safe and effective radiopharmaceutical with promising theranostic characteristics for patients with advanced MTC.


Subject(s)
Receptor, Cholecystokinin B , Thyroid Neoplasms , Humans , Receptor, Cholecystokinin B/metabolism , Receptor, Cholecystokinin B/therapeutic use , Precision Medicine , Polygeline/therapeutic use , Ligands , Tissue Distribution , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/drug therapy , Peptides
4.
EJNMMI Radiopharm Chem ; 7(1): 18, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35852679

ABSTRACT

BACKGROUND: The development of radiopharmaceuticals requires extensive evaluation before they can be applied in a diagnostic or therapeutic setting in Nuclear Medicine. Chemical, radiochemical, and pharmaceutical parameters must be established and verified to ensure the quality of these novel products. MAIN BODY: To provide supportive evidence for the expected human in vivo behaviour, particularly related to safety and efficacy, additional tests, often referred to as "non-clinical" or "preclinical" are mandatory. This document is an outcome of a Technical Meeting of the International Atomic Energy Agency. It summarises the considerations necessary for non-clinical studies to accommodate the regulatory requirements for clinical translation of radiopharmaceuticals. These considerations include non-clinical pharmacology, radiation exposure and effects, toxicological studies, pharmacokinetic modelling, and imaging studies. Additionally, standardisation of different specific clinical applications is discussed. CONCLUSION: This document is intended as a guide for radiopharmaceutical scientists, Nuclear Medicine specialists, and regulatory professionals to bring innovative diagnostic and therapeutic radiopharmaceuticals into the clinical evaluation process in a safe and effective way.

5.
Eur J Nucl Med Mol Imaging ; 49(10): 3353-3364, 2022 08.
Article in English | MEDLINE | ID: mdl-35385986

ABSTRACT

This document is intended as a supplement to the EANM "Guidelines on current Good Radiopharmacy Practice (cGRPP)" issued by the Radiopharmacy Committee of the EANM (Gillings et al. in EJNMMI Radiopharm Chem. 6:8, 2021). The aim of the EANM Radiopharmacy Committee is to provide a document that describes how to manage risks associated with small-scale "in-house" preparation of radiopharmaceuticals, not intended for commercial purposes or distribution.


Subject(s)
Nuclear Medicine , Radiopharmaceuticals , Humans , Radiopharmaceuticals/adverse effects , Risk Management
6.
Cancers (Basel) ; 13(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830930

ABSTRACT

The cholecystokinin-2 receptor (CCK2R) has been a target of interest for molecular imaging and targeted radionuclide therapy for two decades. However, so far CCK2R targeted imaging and therapy has not been introduced in clinical practice. Within this review the recent radiopharmaceutical development of CCK2R targeting compounds and the ongoing clinical trials are presented. Currently, new gastrin derivatives as well as nonpeptidic substances are being developed to improve the properties for clinical use. A team of specialists from the field of radiopharmacy and nuclear medicine reviewed the available literature and summarized their own experiences in the development and clinical testing of CCK2R targeting radiopharmaceuticals. The recent clinical trials with novel radiolabeled minigastrin analogs demonstrate the potential for both applications, imaging as well as targeted radiotherapy, and reinforce the clinical applicability within a theranostic concept. The intense efforts in optimizing CCK2R targeting radiopharmaceuticals has led to new substances for clinical use, as shown in first imaging studies in patients with advanced medullary thyroid cancer. The first clinical results suggest that the wider clinical implication of CCK2R-targeted radiopharmaceuticals is reasonable.

SELECTION OF CITATIONS
SEARCH DETAIL
...