Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Vet Res ; 55(1): 70, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822378

ABSTRACT

Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.


Subject(s)
Adhesins, Escherichia coli , Bacterial Adhesion , Chickens , Escherichia coli Infections , Poultry Diseases , Poultry Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Animals , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
2.
Microbiol Spectr ; 12(5): e0260623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38530058

ABSTRACT

Escherichia coli intestinal infection pathotypes are characterized by distinct adhesion patterns, including the recently described clumpy adhesion phenotype. Here, we identify and characterize the genetic factors contributing to the clumpy adhesion of E. coli strain 4972. In this strain, the transcriptome and proteome of adhered bacteria were found to be distinct from planktonic bacteria in the supernatant. A total of 622 genes in the transcriptome were differentially expressed in bacteria present in clumps relative to the planktonic bacteria. Seven genes targeted for disruption had variable distribution in different pathotypes and nonpathogenic E. coli, with the pilV and spnT genes being the least frequent or absent from most groups. Deletion (Δ) of five differentially expressed genes, flgH, ffp, pilV, spnT, and yggT, affected motility, adhesion, or antibiotic stress. ΔflgH exhibited 80% decrease and ΔyggT depicted 184% increase in adhesion, and upon complementation, adhesion was significantly reduced to 13%. ΔflgH lost motility and was regenerated when complemented, whereas Δffp had significantly increased motility, and reintroduction of the same gene reduced it to the wild-type level. The clumps produced by Δffp and ΔspnT were more resistant and protected the bacteria, with ΔspnT showing the best clump formation in terms of ampicillin stress protection. ΔyggT had the lowest tolerance to gentamicin, where the antibiotic stress completely eliminated the bacteria. Overall, we were able to investigate the influence of clump formation on cell surface adhesion and antimicrobial tolerance, with the contribution of several factors crucial to clump formation on susceptibility to the selected antibiotics. IMPORTANCE: The study explores a biofilm-like clumpy adhesion phenotype in Escherichia coli, along with various factors and implications for antibiotic susceptibility. The phenotype permitted the bacteria to survive the onslaught of high antibiotic concentrations. Profiles of the transcriptome and proteome allowed the differentiation between adhered bacteria in clumps and planktonic bacteria in the supernatant. The deletion mutants of genes differentially expressed between adhered and planktonic bacteria, i.e., flgH, ffp, pilV, spnT, and yggT, and respective complementations in trans cemented their roles in multiple capacities. ffp, an uncharacterized gene, is involved in motility and resistance to ampicillin in a clumpy state. The work also affirms for the first time the role of the yggT gene in adhesion and its involvement in susceptibility against another aminoglycoside antibiotic, i.e., gentamicin. Overall, the study contributes to the mechanisms of biofilm-like adhesion phenotype and understanding of the antimicrobial therapy failures and infections of E. coli.


Subject(s)
Anti-Bacterial Agents , Bacterial Adhesion , Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Bacterial Adhesion/genetics , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Escherichia coli Infections/microbiology , Biofilms/drug effects , Biofilms/growth & development , Drug Resistance, Bacterial/genetics , Transcriptome
3.
J Virol ; 98(3): e0147623, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376991

ABSTRACT

The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.


Subject(s)
Bacteriophages , Environmental Microbiology , Salmonella enterica , Anti-Bacterial Agents/therapeutic use , Bacteriophages/isolation & purification , Drug Collateral Sensitivity , Lipopolysaccharides , Salmonella enterica/virology , Phage Therapy , Salmonella Infections/therapy , Humans
4.
Bioinformatics ; 40(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38377398

ABSTRACT

MOTIVATION: Missing values are commonly observed in metabolomics data from mass spectrometry. Imputing them is crucial because it assures data completeness, increases the statistical power of analyses, prevents inaccurate results, and improves the quality of exploratory analysis, statistical modeling, and machine learning. Numerous Missing Value Imputation Algorithms (MVIAs) employ heuristics or statistical models to replace missing information with estimates. In the context of metabolomics data, we identified 52 MVIAs implemented across 70 R functions. Nevertheless, the usage of those 52 established methods poses challenges due to package dependency issues, lack of documentation, and their instability. RESULTS: Our R package, 'imputomics', provides a convenient wrapper around 41 (plus random imputation as a baseline model) out of 52 MVIAs in the form of a command-line tool and a web application. In addition, we propose a novel functionality for selecting MVIAs recommended for metabolomics data with the best performance or execution time. AVAILABILITY AND IMPLEMENTATION: 'imputomics' is freely available as an R package (github.com/BioGenies/imputomics) and a Shiny web application (biogenies.info/imputomics-ws). The documentation is available at biogenies.info/imputomics.


Subject(s)
Metabolomics , Software , Metabolomics/methods , Algorithms , Computers , Mass Spectrometry/methods
5.
Nat Commun ; 14(1): 6715, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872172

ABSTRACT

The gastric human pathogen Helicobacter pylori has developed mechanisms to combat stress factors, including reactive oxygen species (ROS). Here, we present a comprehensive study on the redox switch protein HP1021 regulon combining transcriptomic, proteomic and DNA-protein interactions analyses. Our results indicate that HP1021 modulates H. pylori's response to oxidative stress. HP1021 controls the transcription of 497 genes, including 407 genes related to response to oxidative stress. 79 proteins are differently expressed in the HP1021 deletion mutant. HP1021 controls typical ROS response pathways (katA, rocF) and less canonical ones, particularly DNA uptake and central carbohydrate metabolism. HP1021 is a molecular regulator of competence in H. pylori, as HP1021-dependent repression of the comB DNA uptake genes is relieved under oxidative conditions, increasing natural competence. Furthermore, HP1021 controls glucose consumption by directly regulating the gluP transporter and has an important impact on maintaining the energetic balance in the cell.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Regulon/genetics , Reactive Oxygen Species/metabolism , Proteomics , Multiomics , Oxidation-Reduction , DNA/metabolism , Bacterial Proteins/metabolism , Helicobacter Infections/genetics
6.
BMC Vet Res ; 19(1): 126, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596603

ABSTRACT

BACKGROUND: Infections caused by avian pathogenic Escherichia coli (APEC) result in significant economic losses in poultry industry. APEC strains are known to form biofilms in various conditions allowing them to thrive even under harsh and nutrient-deficient conditions on different surfaces, and this ability enables them to evade chemical and biological eradication methods. Despite knowing the whole genome sequences of various APEC isolates, little has been reported regarding their biofilm-associated genes. A random transposon mutant library of the wild-type APEC IMT 5155 comprising 1,300 mutants was analyzed for biofilm formation under nutrient deprived conditions using Videoscan technology coupled with fluorescence microscopy. Seven transposon mutants were found to have reproducibly and significantly altered biofilm formation and their mutated genes were identified by arbitrary PCR and DNA sequencing. The intact genes were acquired from the wild-type strain, cloned in pACYC177 plasmid and transformed into the respective altered biofilm forming transposon mutants, and the biofilm formation was checked in comparison to the wild type and mutant strains under the same conditions. RESULTS: In this study, we report seven genes i.e., nhaA, fdeC, yjhB, lysU, ecpR, AJB35136 and fdtA of APEC with significant contribution to biofilm formation. Reintroduction of AJB35136 and fdtA, reversed the altered phenotype proving that a significant role being played by these two O-antigen related genes in APEC biofilm formation. Presence of these seven genes across nonpathogenic E. coli and APEC genomes was also analyzed showing that they are more prevalent in the latter. CONCLUSIONS: The study has elucidated the role of these genes in APEC biofilm formation and compared them to adhesion expanding the knowledge and understanding of the economically significant pathogens.


Subject(s)
Birds , Escherichia coli , Animals , Escherichia coli/genetics , Biofilms , Microscopy, Fluorescence/veterinary , Nutrients
7.
Microb Genom ; 9(4)2023 04.
Article in English | MEDLINE | ID: mdl-37103985

ABSTRACT

Enterohaemolysin (Ehx) and alpha-haemolysin are virulence-associated factors (VAFs) causing the haemolytic phenotype in Escherichia coli. It has been shown that chromosomally and plasmid-encoded alpha-haemolysin are characteristic of specific pathotypes, virulence-associated factors and hosts. However, the prevalence of alpha- and enterohaemolysin does not overlap in the majority of pathotypes. Therefore, this study focuses on the characterization of the haemolytic E. coli population associated with multiple pathotypes in human and animal infectious diseases. Using a genomics approach, we investigated characteristic features of the enterohaemolysin-encoding strains to identify factors differentiating enterohaemolysin-positive from alpha-haemolysin-positive E. coli populations. To shed light on the functionality of Ehx subtypes, we analysed Ehx-coding genes and inferred EhxA phylogeny. The two haemolysins are associated with a different repertoire of adhesins, iron acquisition or toxin systems. Alpha-haemolysin is predominantly found in uropathogenic E. coli (UPEC) and predicted to be chromosomally encoded, or nonpathogenic and undetermined E. coli pathotypes and typically predicted to be plasmid-encoded. Enterohaemolysin is mainly associated with Shiga toxin-producing E. coli (STEC) and enterohaemorrhagic E. coli (EHEC) and predicted to be plasmid-encoded. Both types of haemolysin are found in atypical enteropathogenic E. coli (aEPEC). Moreover, we identified a new EhxA subtype present exclusively in genomes with VAFs characteristic of nonpathogenic E. coli. This study reveals a complex relationship between haemolytic E. coli of diverse pathotypes, providing a framework for understanding the potential role of haemolysin in pathogenesis.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Proteins , Animals , Humans , Hemolysin Proteins/genetics , Escherichia coli Proteins/genetics , Genomics , Virulence Factors/genetics
8.
Food Microbiol ; 112: 104237, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36906307

ABSTRACT

Non-Typhoidal Salmonella (NTS) continues to be a leading cause of foodborne illness worldwide. Food manufacturers implement hurdle technology by combining more than one approach to control food safety and quality, including preservatives such as organic acids, refrigeration, and heating. We assessed the variation in survival in stresses of genotypically diverse isolates of Salmonella enterica to identify genotypes with potential elevated risk to sub-optimal processing or cooking. Sub-lethal heat treatment, survival in desiccated conditions and growth in the presence of NaCl or organic acids were investigated. S. Gallinarum strain 287/91 was most sensitive to all stress conditions. While none of the strains replicated in a food matrix at 4 °C, S. Infantis strain S1326/28 retained the greatest viability, and six strains exhibited a significantly reduced viability. A S. Kedougou strain exhibited the greatest resistance to incubation at 60 °C in a food matrix that was significantly greater than S. Typhimurium U288, S Heidelberg, S. Kentucky, S. Schwarzengrund and S. Gallinarum strains. Two isolates of monophasic S. Typhimurium, S04698-09 and B54Col9 exhibited the greatest tolerance to desiccation that was significantly more than for the S. Kentucky and S. Typhimurium U288 strains. In general, the presence of 12 mM acetic acid or 14 mM citric acid resulted in a similar pattern of decreased growth in broth, but this was not observed for S. Enteritidis, and S. Typhimurium strains ST4/74 and U288 S01960-05. Acetic acid had a moderately greater effect on growth despite the lower concentration tested. A similar pattern of decreased growth was observed in the presence of 6% NaCl, with the notable exception that S. Typhimurium strain U288 S01960-05 exhibited enhanced growth in elevated NaCl concentrations.


Subject(s)
Salmonella enterica , Salmonella enterica/genetics , Sodium Chloride , Food Chain , Serogroup , Salmonella , Acetic Acid , Acids
9.
Front Microbiol ; 14: 1340143, 2023.
Article in English | MEDLINE | ID: mdl-38249450

ABSTRACT

Introduction: Multidrug resistance in bacteria is a pressing concern, particularly among clinical isolates. Gram-negative bacteria like Salmonella employ various strategies, such as altering membrane properties, to resist treatment. Their two-membrane structure affects susceptibility to antibiotics, whereas specific proteins and the peptidoglycan layer maintain envelope integrity. Disruptions can compromise stability and resistance profile toward xenobiotics. In this study, we investigated the unexplored protein SanA's role in modifying bacterial membranes, impacting antibiotic resistance, and intracellular replication within host cells. Methods: We generated a sanA deletion mutant and complemented it in trans to assess its biological function. High-throughput phenotypic profiling with Biolog Phenotype microarrays was conducted using 240 xenobiotics. Membrane properties and permeability were analyzed via cytochrome c binding, hexadecane adhesion, nile red, and ethidium bromide uptake assays, respectively. For intracellular replication analysis, primary bone marrow macrophages served as a host cells model. Results: Our findings demonstrated that the absence of sanA increased membrane permeability, hydrophilicity, and positive charge, resulting in enhanced resistance to certain antibiotics that target peptidoglycan synthesis. Furthermore, the sanA deletion mutant demonstrated enhanced replication rates within primary macrophages, highlighting its ability to evade the bactericidal effects of the immune system. Taking together, we provide valuable insights into a poorly known SanA protein, highlighting the complex interplay among bacterial genetics, membrane physiology, and antibiotic resistance, underscoring its significance in understanding Salmonella pathogenicity.

10.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35988923

ABSTRACT

Antimicrobial peptides (AMPs) are a heterogeneous group of short polypeptides that target not only microorganisms but also viruses and cancer cells. Due to their lower selection for resistance compared with traditional antibiotics, AMPs have been attracting the ever-growing attention from researchers, including bioinformaticians. Machine learning represents the most cost-effective method for novel AMP discovery and consequently many computational tools for AMP prediction have been recently developed. In this article, we investigate the impact of negative data sampling on model performance and benchmarking. We generated 660 predictive models using 12 machine learning architectures, a single positive data set and 11 negative data sampling methods; the architectures and methods were defined on the basis of published AMP prediction software. Our results clearly indicate that similar training and benchmark data set, i.e. produced by the same or a similar negative data sampling method, positively affect model performance. Consequently, all the benchmark analyses that have been performed for AMP prediction models are significantly biased and, moreover, we do not know which model is the most accurate. To provide researchers with reliable information about the performance of AMP predictors, we also created a web server AMPBenchmark for fair model benchmarking. AMPBenchmark is available at http://BioGenies.info/AMPBenchmark.


Subject(s)
Antimicrobial Peptides , Benchmarking , Anti-Bacterial Agents , Peptides/chemistry
11.
Biology (Basel) ; 11(4)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35453764

ABSTRACT

Over 400 of the 3800 tropical avian species are endangered or threatened. One of many solutions to conserve animal biodiversity is breeding animals in zoos or private animal farms. Animal breeding programs are difficult to implement in species with sexual monomorphism, such as parrots. Molecular biology methods offer a solution to determine the sex of these species. Therefore, in this study, we aimed to test the performance of PCR and LAMP techniques on sex identification for 21 parrot species belonging to three families, i.e., Psittacidae, Cacatuidae, and Psittaculidae. We established a protocol for DNA isolation from feathers in our laboratory and found optimal conditions for PCR and LAMP. We showed that the LAMP method with the use of the PSI-W primers set, developed by Centeno-Cuadros, functions in 17 previously untested species. Moreover, we found that further improvements are required in universal LAMP primers for the detection of parrot DNA, which are necessary for confirmation of the male sex. The LAMP method also proved to be more sensitive for female sex identification in contrast to the reference PCR test. Therefore, we conclude that LAMP is a suitable method for the routine diagnostic sex identification of parrots.

12.
Appl Environ Microbiol ; 88(5): e0227921, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35020452

ABSTRACT

Pathogenic bacteria, such as enteropathogenic Escherichia coli (EPEC) and enterotoxigenic E. coli (ETEC), cause diarrhea in mammals. In particular, E. coli colonizes and infects the gastrointestinal tract via type 1 fimbriae (T1F). Here, the major zymogen granule membrane glycoprotein 2 (GP2) acts as a host cell receptor. GP2 is also secreted by the pancreas and various mucous glands, interacting with luminal type 1 fimbriae-positive E. coli. It is unknown whether GP2 isoforms demonstrate specific E. coli pathotype binding. In this study, we investigated interactions of human, porcine, and bovine EPEC and ETEC, as well as commensal E. coli isolates with human, porcine, and bovine GP2. We first defined pathotype- and host-associated FimH variants. Second, we could prove that GP2 isoforms bound to FimH variants to various degrees. However, the GP2-FimH interactions did not seem to be influenced by the host specificity of E. coli. In contrast, soluble GP2 affected ETEC infection and phagocytosis rates of macrophages. Preincubation of the ETEC pathotype with GP2 reduced the infection of cell lines. Furthermore, preincubation of E. coli with GP2 improved the phagocytosis rate of macrophages. Our findings suggest that GP2 plays a role in the defense against E. coli infection and in the corresponding host immune response. IMPORTANCE Infection by pathogenic bacteria, such as certain Escherichia coli pathotypes, results in diarrhea in mammals. Pathogens, including zoonotic agents, can infect different hosts or show host specificity. There are Escherichia coli strains which are frequently transmitted between humans and animals, whereas other Escherichia coli strains tend to colonize only one host. This host specificity is still not fully understood. We show that glycoprotein 2 is a selective receptor for particular Escherichia coli strains or variants of the adhesin FimH but not a selector for a species-specific Escherichia coli group. We demonstrate that GP2 is involved in the regulation of colonization and infection and thus represents a molecule of interest for the prevention or treatment of disease.


Subject(s)
Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Animals , Cattle , Diarrhea/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Fimbriae, Bacterial/metabolism , Mammals , Membrane Glycoproteins/metabolism , Secretory Vesicles/metabolism , Swine
13.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34939560

ABSTRACT

Since the discovery of haemolysis, many studies focused on a deeper understanding of this phenotype in Escherichia coli and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic E. coli unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic E. coli. Analysis of over 1000 haemolytic E. coli genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of hlyCABD cluster. Haemolytic E. coli with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic E. coli with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic E. coli, with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.


Subject(s)
Adhesins, Escherichia coli/genetics , Escherichia coli/genetics , Hemolysin Proteins/genetics , Iron/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fimbriae Proteins/genetics , Humans , Molecular Chaperones/genetics , Multigene Family , Mutation , Plasmids/genetics
14.
Virol J ; 18(1): 183, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34496915

ABSTRACT

BACKGROUND: The host-unrestricted, non-typhoidal Salmonella enterica serovar Enteritidis (S. Enteritidis) and the serovar Typhimurium (S. Typhimurium) are major causative agents of food-borne gastroenteritis, and the host-restricted Salmonella enterica serovar Gallinarum (S. Gallinarum) is responsible for fowl typhoid. Increasing drug resistance in Salmonella contributes to the reduction of effective therapeutic and/or preventive options. Bacteriophages appear to be promising antibacterial tools, able to combat infectious diseases caused by a wide range of Salmonella strains belonging to both host-unrestricted and host-restricted Salmonella serovars. METHODS: In this study, five novel lytic Salmonella phages, named UPWr_S1-5, were isolated and characterized, including host range determination by plaque formation, morphology visualization with transmission electron microscopy, and establishment of physiological parameters. Moreover, phage genomes were sequenced, annotated and analyzed, and their genomes were compared with reference Salmonella phages by use of average nucleotide identity, phylogeny, dot plot, single nucleotide variation and protein function analysis. RESULTS: It was found that UPWr_S1-5 phages belong to the genus Jerseyvirus within the Siphoviridae family. All UPWr_S phages were found to efficiently infect various Salmonella serovars. Host range determination revealed differences in host infection profiles and exhibited ability to infect Salmonella enterica serovars such as Enteritidis, Gallinarum, Senftenberg, Stanley and Chester. The lytic life cycle of UPWr_S phages was confirmed using the mitomycin C test assay. Genomic analysis revealed that genomes of UPWr_S phages are composed of 51 core and 19 accessory genes, with 33 of all predicted genes having assigned functions. UPWr_S genome organization comparison revealed 3 kinds of genomes and mosaic structure. UPWr_S phages showed very high sequence similarity to each other, with more than 95% average nucleotide identity. CONCLUSIONS: Five novel UPWr_S1-5 bacteriophages were isolated and characterized. They exhibit host lysis range within 5 different serovars and are efficient in lysis of both host-unrestricted and host-restricted Salmonella serovars. Therefore, because of their ability to infect various Salmonella serovars and lytic life cycle, UPWr_S1-5 phages can be considered as useful tools in biological control of salmonellosis.


Subject(s)
Genome, Viral , Salmonella Phages , Salmonella enteritidis/virology , Siphoviridae , Genomics , Salmonella Phages/genetics , Siphoviridae/genetics
15.
Vet Microbiol ; 257: 109095, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33940458

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections and the development of colibacillosis, causing high mortality in farm birds and extensive losses in the poultry industry worldwide. The virulence of APEC is a complex phenomenon associated with numerous mechanisms involving a variety of extracellular and intracellular structures to overcome host barriers. Initial bacterial attachment or adhesion to host cells is vital to bacterial pathogenesis and is determined by various adhesins. These proteins protect pathogens against possible host defense mechanisms, enabling the effective use of other virulence attributes. Considering this property, the current review provides a systematic and in-depth analysis of the latest information on adhesins analyzed in APEC strains. This review discusses in detail each of the adhesin types, such as fimbrial chaperone-usher, fimbrial curli, nonfimbrial and atypical adhesins, and their components, presenting an opportunity to gain a better understanding of different adhesins and mechanisms employed in pathogenesis. Additionally, the article scrutinizes and notes missing information and potential studies that need to be undertaken to develop a complete understanding of APEC adhesion.


Subject(s)
Adhesins, Escherichia coli/metabolism , Bacterial Adhesion , Escherichia coli Infections/veterinary , Escherichia coli/pathogenicity , Fimbriae, Bacterial/metabolism , Adhesins, Escherichia coli/genetics , Animals , Chickens/microbiology , Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/genetics , Poultry/microbiology , Poultry Diseases/microbiology , Virulence
16.
Microorganisms ; 9(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673351

ABSTRACT

To increase our understanding of bacterial intestinal colonization in animal populations lacking substantial anthropogenic influence we studied the diversity of E. coli in cormorants from the pristine West-Mongolian steppe. E. coli were isolated from individual birds of two cormorant colonies located on small islands in lakes at least 100 km away from human settlements. Diversity of the isolates was studied using pulsed-field gel electrophoresis (PFGE). 137 isolates of cormorant colony-1 and 75 isolates of cormorant colony-2 resulted in 60 and 33 PFGE types, respectively. Representative strains of each PFGE type were analyzed via PCR in terms of phylogroups and extraintestinal virulence-associated genes (exVAGs). Bacterial adhesion to the chicken intestinal cell line CHIC-8E11 and antimicrobial resistance was also determined. Most isolates belonged to phylogroup B1 (68.3%) followed by B2 and E with B2 harboring the highest total number of exVAGs per isolate. Unexpectedly, a PFGE type with relatively few exVAGs displayed the highest isolation frequency, also showing a high adhesion rate. Comparative analysis of exVAGs to other E. coli populations of wildlife origin revealed that the secreted autotransporter toxin encoding sat gene was only present in cormorants. Overall, E. coli in cormorants maintained a high diversity under minimal anthropogenic influences, which likely enables intestinal colonization.

17.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article in English | MEDLINE | ID: mdl-33127819

ABSTRACT

The initial steps of Salmonella pathogenesis involve adhesion to and invasion into host epithelial cells. While well-studied for Salmonella enterica serovar Typhimurium, the factors contributing to this process in other, host-adapted serovars remains unexplored. Here, we screened clinical isolates of serovars Gallinarum, Dublin, Choleraesuis, Typhimurium, and Enteritidis for adhesion to and invasion into intestinal epithelial cell lines of human, porcine, and chicken origins. Thirty isolates with altered infectivity were used for genomic analyses, and 14 genes and novel mutations associated with high or low infectivity were identified. The functions of candidate genes included virulence gene expression regulation and cell wall or membrane synthesis and components. The role of several of these genes in Salmonella adhesion to and invasion into cells has not previously been investigated. The genes dksA (encoding a stringent response regulator) and sanA (encoding a vancomycin high-temperature exclusion protein) were selected for further analyses, and we confirmed their roles in adhesion to and invasion into host cells. Furthermore, transcriptomic analyses were performed for S Enteritidis and S Typhimurium, with two highly infective and two marginally infective isolates for each serovar. Expression profiles for the isolates with altered infection phenotypes revealed the importance of type 3 secretion system expression levels in the determination of an isolate's infection phenotype. Taken together, these data indicate a new role in cell host infection for genes or gene variants previously not associated with adhesion to and invasion into the epithelial cells.IMPORTANCESalmonella is a foodborne pathogen affecting over 200 million people and resulting in over 200,000 fatal cases per year. Its adhesion to and invasion into intestinal epithelial cells represent one of the first and key steps in the pathogenesis of salmonellosis. Still, around 35 to 40% of bacterial genes have no experimentally validated function, and their contribution to bacterial virulence, including adhesion and invasion, remains largely unknown. Therefore, the significance of this study is in the identification of new genes or gene allelic variants previously not associated with adhesion and invasion. It is well established that blocking adhesion and/or invasion would stop or hamper bacterial infection; therefore, the new findings from this study could be used in future developments of anti-Salmonella therapy targeting genes involved in these key processes. Such treatment could be a valuable alternative, as the prevalence of antibiotic-resistant bacteria is increasing very rapidly.


Subject(s)
Epithelial Cells/microbiology , Salmonella enterica/physiology , Animals , Bacterial Adhesion , Cell Line , Chickens , Epithelial Cells/physiology , Genes, Bacterial , Humans , Mutation , Phenotype , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Serogroup , Swine
18.
Front Microbiol ; 11: 1699, 2020.
Article in English | MEDLINE | ID: mdl-32793163

ABSTRACT

BACKGROUND: In addition to the broad dissemination of pathogenic extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli in human and veterinary medicine and the community, their occurrence in wildlife and the environment is a growing concern. Wild birds in particular often carry clinically relevant ESBL-producing E. coli. OBJECTIVES: We analyzed ESBL-producing and non-ESBL-producing E. coli obtained from wild birds in Mongolia to identify phylogenetic and functional characteristics that would explain the predominance of a particular E. coli clonal lineage in this area. METHODS: We investigated ESBL-producing E. coli using whole-genome sequencing and phylogenetics to describe the population structure, resistance and virulence features and performed phenotypic experiments like biofilm formation and adhesion to epithelial cells. We compared the phenotypic characteristics to non-ESBL-producing E. coli from the same background (Mongolian wild birds) and genomic results to publicly available genomes. RESULTS AND CONCLUSION: We found ESBL-producing E. coli sequence type (ST) 1159 among wild birds in Mongolia. This clonal lineage carried virulence features typical for extra-intestinal pathogenic or enterotoxigenic E. coli. Comparative functional experiments suggested no burden of resistance in the ST1159 isolates, which is despite their carriage of ESBL-plasmids. Wild birds will likely disseminate these antibiotic-resistant pathogens further during migration.

19.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32769194

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is a major bacterial pathogen of commercial poultry contributing to extensive economic losses and contamination of the food chain. One of the initial steps in bacterial infection and successful colonization of the host is adhesion to the host cells. A random transposon mutant library (n = 1,300) of APEC IMT 5155 was screened phenotypically for adhesion to chicken (CHIC-8E11) and human (LoVo) intestinal epithelial cell lines. The detection and quantification of adherent bacteria were performed by a modified APEC-specific antibody staining assay using fluorescence microscopy coupled to automated VideoScan technology. Eleven mutants were found to have significantly altered adhesion to the cell lines examined. Mutated genes in these 11 "adhesion-altered mutants" were identified by arbitrary PCR and DNA sequencing. The genes were amplified from wild-type APEC IMT 5155, cloned, and transformed into the respective adhesion-altered mutants, and complementation was determined in adhesion assays. Here, we report contributions of the fdtA, rluD, yjhB, ecpR, and fdeC genes of APEC in adhesion to chicken and human intestinal cell lines. Identification of the roles of these genes in APEC pathogenesis will contribute to prevention and control of APEC infections.IMPORTANCE Avian pathogenic E. coli is not only pathogenic for commercial poultry but can also cause foodborne infections in humans utilizing the same attachment and virulence mechanisms. Our aim was to identify genes of avian pathogenic E. coli involved in adhesion to chicken and human cells in order to understand the colonization and pathogenesis of these bacteria. In contrast to the recent studies based on genotypic and bioinformatics data, we have used a combination of phenotypic and genotypic approaches for identification of novel genes contributing to adhesion in chicken and human cell lines. Identification of adhesion factors remains important, as antibodies elicited against such factors have shown potential to block colonization and ultimately prevent disease as prophylactic vaccines. Therefore, the data will augment the understanding of disease pathogenesis and ultimately in designing strategies against the infections.


Subject(s)
Adhesins, Escherichia coli/genetics , Bacterial Adhesion/genetics , Escherichia coli/physiology , Genes, Bacterial/physiology , Adhesins, Escherichia coli/metabolism , Animals , Cell Line , Chickens , Escherichia coli/genetics , Humans
20.
Front Microbiol ; 10: 1017, 2019.
Article in English | MEDLINE | ID: mdl-31139165

ABSTRACT

Initial attachment to host intestinal mucosa after oral infection is one of the most important stages during bacterial pathogenesis. Adhesive structures, widely present on the bacterial surface, are mainly responsible for the first contact with host cells and of host-pathogen interactions. Among dozens of different bacterial adhesins, type 1 fimbriae (T1F) are one of the most common adhesive organelles in the members of the Enterobacteriaceae family, including Salmonella spp., and are important virulence factors. Those long, thin structures, composed mainly of FimA proteins, are responsible for recognizing and binding high-mannose oligosaccharides, which are carried by various glycoproteins and expressed at the host cell surface, via FimH adhesin, which is presented at the top of T1F. In this review, we discuss investigations into the functions of T1F, from the earliest work published in 1958 to operon organization, organelle structure, T1F biogenesis, and the various functions of T1F in Salmonella-host interactions. We give special attention to regulation of T1F expression and their role in binding of Salmonella to cells, cell lines, organ explants, and other surfaces with emphasis on biofilm formation and discuss T1F role as virulence factors based on work using animal models. We also discuss the importance of allelic variation in fimH to Salmonella pathogenesis, as well as role of FimH in Salmonella host specificity.

SELECTION OF CITATIONS
SEARCH DETAIL
...